Ruta Graveolens Cultures As Screening Resources for Phyto-Pharmaceuticals: Bio-Prospecting, Metabolic Phenotyping and Multivariate Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Ruta Graveolens Cultures As Screening Resources for Phyto-Pharmaceuticals: Bio-Prospecting, Metabolic Phenotyping and Multivariate Analysis ® Bioremediation, Biodiversity and Bioavailability ©2011 Global Science Books Ruta graveolens Cultures as Screening Resources for Phyto-Pharmaceuticals: Bio-prospecting, Metabolic Phenotyping and Multivariate Analysis Renuka Diwan • Nutan Malpathak* Department of Botany, University of Pune, Pune: 411007 Maharashtra, India Corresponding author : * [email protected] ABSTRACT Ruta graveolens is a folklore plant, used by ancient Egyptians and Greeks and used in traditional medicine systems like Unani, Ayurveda and traditional Chinese medicine. The plant has potent anti-inflammatory, anti-cancer and anti-HIV activity. In this study, R. graveolens and six in vitro cultures (with varying degrees of differentiation) were screened for biologically active compounds by GC-MS analysis. Non-targeted comprehensive analysis, directed towards extracting broad spectrum biochemical information was used for bioprospecting. The relationship between metabolic components and lines was interpreted with the help of multivariate analysis (hierarchical cluster analysis and principal component analysis). The characteristic metabolic traits underlying clustering and separation of culture lines were also elucidated. Bio-prospecting based on GC-MS analysis indicated the presence of several metabolites with a wide range of bioactivities: photobilogical, anti-microbial, anti-viral, anti-oxidative, anti-proliferative, anti-inflammatory, anti-tumour, anti-platelet aggregation, anti- HIV, immunomodulatory, estrogenic activity, among others with potential economic importance. Multivariate analysis demonstrated that metabolic traits enabled the discrimination of genotypes that exhibited marked differences in pharmaceutically important metabolites. With the use of metabolic phenotyping, in vitro cultures can be used as novel screening resources for new or improved phyto- pharmacueticals. _____________________________________________________________________________________________________________ Keywords: metabolic profiling, hierarchical cluster analysis, principal component analysis Abbreviations: FC, furanocoumarin; HCA, hierarchical cluster analysis; Ia3, transformed clone; PCA, principal component analysis; RC1, dispersed cell line; RS2, shoot line; RC3, aggregated cell line; RC6, differentiated cell line INTRODUCTION derived from the Greek “reuo” (to set free), because this herb is so efficacious in various diseases. Ancient Egyptians Natural products have provided inspiration for most of the and early Greeks used Ruta to improve eyesight. In Chinese active ingredients in medicines: around 80% of medicinal medicine, it is used for its antifungal, antibacterial and anti- products up to 1996 were either directly derived from natu- inflammatory properties. Ruta has been reported to be rally occurring compounds or were inspired by a natural useful for the treatment of multiple sclerosis and also pos- product, and more recent analysis confirms the continuing sesses hypotensive activity (Korengath et al. 2008). It has a importance of natural products for drug discovery (Harvey long history of use in homeopathic, Ayurvedic and Unani 2001, 2004, 2007). The search for active phytocompounds preparations (Elia 2003). It has traditionally been used in will be greatly advanced by the combination of various treatment of leucoderma, vitiligo, psoriasis, multiple sclero- metabolomic approaches to differentiate between plant spe- sis, cutaneous lymphomas, and rheumatic arthritis. Recently cies, tissues, or phytopreparations, and to identify novel its extracts were shown to have potent anti-inflammatory lead compounds for future development. Though the use of and anti-cancer activity (Pathak et al. 2003; Preethi et al. metabolomics in the development of active secondary meta- 2007; Diwan and Malpathak 2009). Plant parts contain bolites from medicinal plants as novel or improved phyto- more than 120 compounds of dierent classes of natural therapeutic agents is still limited, it can offer a comprehen- products such as acridone alkaloids, coumarins, essential sive overview of the identity and quantity of metabolites in oils, \avonoids, and furoquinolines (Feo et al. 2002; Oliva biological materials. Wang et al. (2005) pointed out that et al. 2003). Many of these compounds are physiologically metabolomics could provide the needed links between the active and therefore of immense pharmaceutical interest. complex chemical mixtures used in traditional medicines With the success achieved in increasing culture produc- and molecular pharmacology. In a complementary develop- tivity, in vitro cultures are now being promoted as alterna- ment, the use of metabolome-refined herbal extracts with tive source and screening resources (bio-prospecting) for other biochemical components in combination, rather than new or improved phyto-pharmacueticals. Reports describing as isolated single compound(s), may prove to be very useful the successful use of R. graveolens culture for furanocou- as broader and holistic therapeutic or pharmacological marin (FC) production (Ekiert et al. 1998, 2001) have made agents for a variety of human health care applications them promising alternatives with potential for large-scale (Shyur and Yang 2008). Even though such approaches have production (Gontier et al. 2005; Diwan and Malpathak been employed for traditional Chinese medicines (TCM), 2008). Enhanced production of FCs was achieved by mani- its applications for traditional Indian medicine are yet to be pulations of media constituents (Massot et al. 2000) and realized. culture conditions (Ekiert and Gomóka 1999; Ekiert et al. Ruta graveolens (Rutaceae), a folklore plant, is used as 2001). Effective elicitation by biotic and abiotic elicitors traditional medicine for various ailments. The name Ruta is (Bolhmann et al. 1995; Orlita et al. 2007a, 2007b, 2008), Received: 5 April, 2010. Accepted: 10 September, 2010. Original Research Paper Bioremediation, Biodiversity and Bioavailability 5 (1), 1-9 ©2011 Global Science Books for enhanced FC production was recently reported. Besides vested, dried at 40°C and pulverized. Roots were also dried and coumarins, Ruta cultures have several biologically active powdered as described above. In vitro plant material was harves- metabolites present like protocatechuic, vanillic, syringic ted on the 21st day after culture initiation, dried at 40°C and pow- and p-coumaric acid (Ekiert et al. 2009), triglycerides (Asil- dered. Extraction of in vivo and in vitro material was carried out as bekova 2001), lipids (Asilbekova 2000), furacridone alka- follows. Finely pulverized in vivo/in vitro plant material (100 mg) loids (Nahrstedt et al. 1985), volatile oils (Kuzovkina et al. was sonicated (33 Mhz) for 20 min at room temperature and cold- 2009), acridone alkaloids (Sidwa-Gorycka et al. 2009), and extracted in ultra-pure methanol overnight. The extract was centri- arbutin (Piekoszewska et al. 2010). fuged at 10,000 rpm for 20 min and the supernatant was filtered Therefore R. graveolens and selected in vitro cultures (using a 0.45 μM membrane filter; Laxbro, India). After filtration, were screened for biologically active compounds by GC- the extract was evaporated to dryness at room temperature and MS analysis. In this study, six in vitro cultures with varying dissolved in ethyl acetate (ultra-pure). The final concentration of degrees of differentiation were screened for biologically all crude extracts was 1 mg ml-1. Methanolic extracts of in vivo active compounds by GC-MS analysis. Shoot line RS2 was plant material (stems and roots) were used as reference during pro- selected for its rapid growth rate and high FC productivity filing. (Diwan and Malpathak 2008). R. graveolens cell cultures that displayed a wide range of cellular differentiation were Metabolic phenotyping selected. Such a range of organization is rarely observed, making it a model system for examining the relation be- Plant extracts were subjected to GC-MS analysis. tween cellular differentiation and secondary metabolite pro- duction. 1. GC-MS conditions This non-targeted comprehensive analysis was directed towards extracting a broad spectrum of biochemical infor- GC-MS analyses were performed using a gas chromatograph mation of the metabolome of selected culture lines. The (Varian 3800 GC, USA) with a data handling system and FID relationship between culture lines and metabolic compo- coupled to ion trap detector, equipped with a DB-5 fused-silica nents was interpreted with the help of multivariate analysis. column (30 m, 0.32 mm ID and 0.25 μM film thickness). Injection The characteristic metabolic traits underlying the clustering temperature was 300°C. Oven temperature was programmed from and separation phenomenon in culture lines were elucidated 50°C for 2 min then increased by 20°C/min until it reached 150°C, using high factor scores of principal component analysis followed by 3°C/min until it reached 225°C and finally increased (PCA). by 15°C/min until it reached 280°C, then held for 9 min with a total run time of 45 min. Helium was used as the carrier gas at a MATERIALS AND METHODS flow rate of 1 ml/min. Injection was done in split mode (4:1) with a volume of 1.0 μl. Plant material 2. MS conditions R. graveolens plants were established from Pune, Kolhapur and Kerela then screened for furanocoumarin productivity. Plants Analysis was performed on a Varian 4000 (USA), ion trap mass having furanocoumarin content higher than 8 mg g-1 DW were spectrophotometer. MS was scanned from 10 to 1000 m/z at a scan
Recommended publications
  • Scopoletin 8-Hydroxylase: a Novel Enzyme Involved in Coumarin
    bioRxiv preprint doi: https://doi.org/10.1101/197806; this version posted October 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron- 2 deficiency responses in Arabidopsis 3 4 Running title: At3g12900 encodes a scopoletin 8-hydroxylase 5 6 Joanna Siwinska1, Kinga Wcisla1, Alexandre Olry2,3, Jeremy Grosjean2,3, Alain Hehn2,3, 7 Frederic Bourgaud2,3, Andrew A. Meharg4, Manus Carey4, Ewa Lojkowska1, Anna 8 Ihnatowicz1,* 9 10 1Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of 11 Gdansk, Abrahama 58, 80-307 Gdansk, Poland 12 2Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy- 13 Colmar, 2 avenue de la forêt de Haye 54518 Vandœuvre-lès-Nancy, France; 3INRA, UMR 14 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye 15 54518 Vandœuvre-lès-Nancy, France; 16 4Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone 17 Road, Belfast, UK; 18 19 [email protected] 20 [email protected] 21 [email protected] 22 [email protected] 23 [email protected] 24 [email protected] 25 [email protected] 26 [email protected] 27 [email protected] 28 *Correspondence: [email protected], +48 58 523 63 30 29 30 The date of submission: 02.10.2017 31 The number of figures: 9 (Fig.
    [Show full text]
  • Morning Glory Systemically Accumulates Scopoletin And
    Morning Glory Systemically Accumulates Scopoletin and Scopolin after Interaction with Fusarium oxysporum Bun-ichi Shimizua,b,*, Hisashi Miyagawaa, Tamio Uenoa, Kanzo Sakatab, Ken Watanabec, and Kei Ogawad a Graduate School of Agriculture, Kyoto University, Kyoto 606Ð8502, Japan b Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan. Fax: +81-774-38-3229. E-mail: [email protected] c Ibaraki Agricultural Center, Ibaraki 311Ð4203, Japan d Kyushu National Agricultural Experiment Station, Kumamoto 861Ð1192, Japan * Author for correspondence and reprint requests Z. Naturforsch. 60c,83Ð90 (2005); received September 14/October 29, 2004 An isolate of non-pathogenic Fusarium, Fusarium oxysporum 101-2 (NPF), induces resis- tance in the cuttings of morning glory against Fusarium wilt caused by F. oxysporum f. sp. batatas O-17 (PF). The effect of NPF on phenylpropanoid metabolism in morning glory cuttings was studied. It was found that morning glory tissues responded to treatment with NPF bud-cell suspension (108 bud-cells/ml) with the activation of phenylalanine ammonia- lyase (PAL). PAL activity was induced faster and greater in the NPF-treated cuttings com- pared to cuttings of a distilled water control. High performance liquid chromatography analy- sis of the extract from tissues of morning glory cuttings after NPF treatment showed a quicker induction of scopoletin and scopolin synthesis than that seen in the control cuttings. PF also the induced synthesis of these compounds at 105 bud-cells/ml, but inhibited it at 108 bud- cells/ml. Possibly PF produced constituent(s) that elicited the inhibitory effect on induction of the resistance reaction.
    [Show full text]
  • Part IV: Basic Considerations of the Psoralens
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector THE CHEMISTRY OF THE PSORALENS* W. L. FOWLKS, Ph.D. The psoralens belong to a group of compoundsfled since biological activity of the psoralens and which have been considered as derivatives ofangelicins has been demonstrated. They appear coumarin, the furocoumarins. There are twelveto have specific biochemical properties which different ways a furan ring can be condensed withmay contribute to the survival of certain plant the coumarin molecule and each of the resultingspecies. Specifically these compounds belong to compounds could be the parent for a family ofthat group of substances which can inhibit certain derivatives. Examples of most of these possibleplant growth without otherwise harming the furocoumarins have been synthesized; but natureplant (2, 3, 5). is more conservative so that all of the naturally It is interesting that it was this property which occurring furocoumarins so far described turnled to the isolation of the only new naturally out to be derivativesof psoralen I or angelicinoccuring furocoumarin discovered in the United II (1). States. Bennett and Bonner (2) isolated tharn- nosmin from leaves of the Desert Rue (Tham- n.osma montana) because a crude extract of this 0 0 plant was the best growth inhibitor found among /O\/8/O\/ the extracts of a number of desert plants sur- i' Ii veyed for this property, although all the extracts showed seedling growth inhibition. One could I II speculate as to the role such growth inhibition plays in the economy of those desert plants These natural derivatives of psoralen and angeli-when survival may depend upon a successful cm have one or more of the following substituentsfight for the little available water.
    [Show full text]
  • Pharmaceutical and Veterinary Compounds and Metabolites
    PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES High quality reference materials for analytical testing of pharmaceutical and veterinary compounds and metabolites. lgcstandards.com/drehrenstorfer [email protected] LGC Quality | ISO 17034 | ISO/IEC 17025 | ISO 9001 PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES What you need to know Pharmaceutical and veterinary medicines are essential for To facilitate the fair trade of food, and to ensure a consistent human and animal welfare, but their use can leave residues and evidence-based approach to consumer protection across in both the food chain and the environment. In a 2019 survey the globe, the Codex Alimentarius Commission (“Codex”) was of EU member states, the European Food Safety Authority established in 1963. Codex is a joint agency of the FAO (Food (EFSA) found that the number one food safety concern was and Agriculture Office of the United Nations) and the WHO the misuse of antibiotics, hormones and steroids in farm (World Health Organisation). It is responsible for producing animals. This is, in part, related to the issue of growing antibiotic and maintaining the Codex Alimentarius: a compendium of resistance in humans as a result of their potential overuse in standards, guidelines and codes of practice relating to food animals. This level of concern and increasing awareness of safety. The legal framework for the authorisation, distribution the risks associated with veterinary residues entering the food and control of Veterinary Medicinal Products (VMPs) varies chain has led to many regulatory bodies increasing surveillance from country to country, but certain common principles activities for pharmaceutical and veterinary residues in food and apply which are described in the Codex guidelines.
    [Show full text]
  • Scopoletin 8-Hydroxylase a Novel Enzyme Involved in Coumarin Biosynthesis and Iron-Deficiency Responses in Arabidopsis
    Scopoletin 8-hydroxylase a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis Siwinska, J., Siatkowska, K., Olry, A., Grosjean, J., Hehn, A., Bourgaud, F., Meharg, A. A., Carey, M., Lojkowska, E., & Ihnatowicz, A. (2018). Scopoletin 8-hydroxylase a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of experimental botany, 69(7), 1735-1748. https://doi.org/10.1093/jxb/ery005 Published in: Journal of experimental botany Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright the authors 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • 69-17821 EINHELLIG, Frank Arnold, 1938- EFFECTS OF
    This dissertation has been microfihned exactly as received _ 69-17,821 EINHELLIG, Frank Arnold, 1938- EFFECTS OF SCOPOLETIN ON GROWTH, 00» EXCHANGE RATES, AND CONCENTRATION OF SCOPOLETIN, SCOPOLIN, AND CHLOROGENIC ACIDS IN TOBACCO, SUNFLOWER, AND PIGWEED. University Microfilms, Inc., Ann Arbor, Michigan This dissertation has been microfilmed exactly as received 69-17,821 EINHELLIG, Frank Arnold, 1938- The University of Oklahoma, Ph.D., 1969 Botany University Microfilms, Inc., Ann Arbor, Michigan THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE EFFECTS OF SCOPOLETIN ON GROWTH, CO EXCHANGE RATES, AND CONCENTRATION OF SCOPOLETIN, SCOPOLIN, AND CHLOROGENIC ACIDS IN TOBACCO, SUNFLOWER, AND PIGWEED A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY FRANK ARNOLD EINHELLIG Norman, Oklahoma 1969 EFFECTS OF SCOPOLETIN ON GROWTH, CO EXCHANGE RATES, AND CONCENTRATION OF SCOPOLETIN, SCOPOLIN, AND CHLOROGENIC ACIDS IN TOBACCO, SUNFLOWER, AND PIGWEED APPROVED BY Jh. ,N- //■ // ^ '-S' DISSERTATION COMMITTEE ACKNOWLEDGMENT I wish to express my sincere thanks to my advisors, Dr. Elroy L. Rice and Dr. Paul G. Hisser, for their advice and encouragement during the course of this research. I am also very appreciative of the initial encouragement and help I received from Dr. Lawrence M. Rohrbaugh. The sug­ gestions, advice, and critical reading of the other mem­ bers of my committee, Dr. Simon H„ Wender and Dr. George Goodman, were also a tremendous aid in this work, I wish to express my thanks to my wife, Trude, and our children, Robert and Richard, for their understanding and sacrifice in the completion of this research.
    [Show full text]
  • Methyltransferases from Ruta Graveolens L.: Molecular Biology
    Methyltransferases from Ruta graveolens L.: Molecular Biology and Biochemistry Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Pharmazie der Philipps-Universität Marburg vorgelegt von Laura Nicoleta Burga aus Fagaras, Rumänien Marburg/Lahn 2005 Vom Fachbereich Pharmazie der Philipps-Universität Marburg als Dissertation angenomen am: 13. 07. 2005 Erstgutachter: Prof. Dr. Ulrich Matern Zweitgutachter: Prof. Dr. Maike Petersen Tag der mündlische Prüfung am: 12. 07. 2005 Publication Laura Burga, Frank Wellmann, Richard Lukacin, Simone Witte, Wilfried Schwab, Joachim Schröder and Ulrich Matern (2005) Unusual pseudosubstrate specificity of a novel 3,5-dimethoxyphenol O-methyltransferase cloned from Ruta graveolens L. Arch Biochem Biophys 2005 Aug 1; 440(1):54-64. _____________________________________________________________________ Table of contents ___ Table of contents i Abreviations vi 1. INTRODUCTION 1.1 Ruta graveolens L. 1 1.1.1 General features 1 1.1.2 Content 2 1.2 Acridone alkaloids 3 1.2.1 Biosynthesis of acridone alkaloids 4 1.2.2 Anthranilate synthase 5 1.2.3 Anthranilate N-methyltransferase 6 1.2.4 N-methylanthranilate:CoA-ligase 6 1.2.5 Acridone synthase 7 1.2.6 Rutacridone and furacridone 7 1.3 Methyltransferases 8 1.3.1 Plant methyltransferases 8 1.3.2 Conserved motifs 15 1.3.3 Active site 16 1.3.4 Importance of methyltransferases in humans 19 1.4 Plant volatile compounds 23 1.4.1 Methyltransferases involved in methylation of volatile compounds 24 1.4.2 Volatile compounds in
    [Show full text]
  • Pharmaceutical and Veterinary Compounds and Metabolites
    PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES High quality reference materials for analytical testing of pharmaceutical and veterinary compounds and metabolites. lgcstandards.com/drehrenstorfer [email protected] LGC Quality | ISO 17034 | ISO/IEC 17025 | ISO 9001 PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES What you need to know Pharmaceutical and veterinary medicines are essential for To facilitate the fair trade of food, and to ensure a consistent human and animal welfare, but their use can leave residues in and evidence-based approach to consumer protection both the food chain and the environment. In a 2019 survey of across the globe, the Codex Alimentarius Commission (“Codex”) EU member states, the European Food Safety Authority (EFSA) was established in 1963. Codex is a joint agency of the FAO found that the number one food safety concern was the (Food and Agriculture Office of the United Nations) and the misuse of antibiotics, hormones and steroids in farm animals. WHO (World Health Organisation). It is responsible for producing This is, in part, related to the issue of growing antibiotic and maintaining the Codex Alimentarius: a compendium of resistance in humans as a result of their potential overuse in standards, guidelines and codes of practice relating to food animals. This level of concern and increasing awareness of safety. The legal framework for the authorisation, distribution the risks associated with veterinary residues entering the food and control of Veterinary Medicinal Products (VMPs) varies chain has led to many regulatory bodies increasing surveillance from country to country, but certain common principles activities for pharmaceutical and veterinary residues in food apply which are described in the Codex guidelines.
    [Show full text]
  • Effect of Scopoletin on Apoptosis and Cell Cycle Arrest in Human Prostate Cancer Cells in Vitro
    Li et al Tropical Journal of Pharmaceutical Research April 2015; 14 (4): 611-617 ISSN: 1596-5996 (print); 1596-9827 (electronic) © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v14i4.8 Original Research Article Effect of Scopoletin on Apoptosis and Cell Cycle Arrest in Human Prostate Cancer Cells In vitro Chun-Long Li*, Xian-Cheng Han, Hong Zhang, Jin-Sheng Wu and Bao Li Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China *For correspondence: Email: [email protected]; Tel/Fax: 0086-536-8068850 Received: 5 November 2014 Revised accepted: 14 March 2015 Abstract Purpose: To investigate the anticancer activity of scopoletin against human prostate cancer. Methods: The anticancer activity of scopoletin was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MMT) assay. Flow cytometry using propidium iodide and annexin V-FITC was employed to study apoptosis and cell cycle analysis. Hoechst 33258 staining was used to assess the effect of scopoletin on cell morphology and apoptotic body formation in human prostate carcinoma (LNCaP) cells via Florescence microscopy and finally Western blotting was used to evaluate the effect of scopoletin on cyclin D1 and cyclin B1 expressions. Results: Scopoletin induced a dose-dependent growth inhibition in LNCaP prostate cancer cells. It induced G2/M phase growth arrest and led to an increase in the sub-G0/G1 cell population after treatment with increasing doses compared to control cells, scopoletin treatment resulted in cell shrinkage along with membrane blebbing which are characteristic features of cell apoptosis.
    [Show full text]
  • Supporting Documents
    Supporting documents A single standard to determine multi-components method coupled with chemometric methods for the quantification, evaluation and classification of Notopterygii Rhizoma et Radix from different regions Xie-an Yu1,2, Jin Li1,†, John Teye Azietaku1,2, Wei Liu1,2, Jun He1,2*, Yan-xu Chang1,2* 1Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China 2Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China *Correspondence: [email protected] (J.H.); [email protected] (Y.C.); † These authors contributed equally to this work. Tel./Fax: + 86-22-59596163 (J.H. &Y.C.) Table1. Data for the calibration curves, LODs, LOQs, Rf and repeatability using ES method (n = 6). Line range LOD LOQ Repeatability Compounds Regressive equation -1 R Rf -1 -1 (µg mL ) (µg mL ) (µg mL ) RSD(%) Chlorogenic acid Y=8509.311X-113.31 0.2-50 0.9999 1 0.03 0.1 1.25 p-Coumaric acid Y=7248.429X-293.686 0.2-25 0.9996 0.783 0.06 0.2 2.39 Scopoletin Y=9064.661X+291.485 0.2-25 0.9998 2.234 0.06 0.2 1.81 Ferulic acid Y=11890.98X-1847.27 0.4-100 0.9999 1.291 0.06 0.2 2.36 Coumarin Y=2289.637X+10.744 0.4-50 0.9999 0.528 0.15 0.4 2.69 Nodakenin Y=8779.59X-291.147 0.4-100 0.9999 1.028 0.035 0.1 1.89 Bergaptol Y=5205.188X-195.825 0.2-50 0.9999 1.141 0.06 0.2 2.16 Psoralen Y=5343.163X-92.878 0.16-20 0.9999 1.163 0.05 0.15 4.09 Angelicin Y=2935.177X-2.095 0.16-20 0.9997 0.672 0.05 0.15 3.06 8-Methoxypsoralen
    [Show full text]
  • Pharmaceutical and Veterinary Compounds and Metabolites
    PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES High quality reference materials for analytical testing of pharmaceutical and veterinary compounds and metabolites. lgcstandards.com/drehrenstorfer [email protected] LGC Quality | ISO 17034 | ISO/IEC 17025 | ISO 9001 PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES What you need to know Pharmaceutical and veterinary medicines are essential for To facilitate the fair trade of food, and to ensure a consistent human and animal welfare, but their use can leave residues and evidence-based approach to consumer protection across in both the food chain and the environment. In a 2019 survey the globe, the Codex Alimentarius Commission (“Codex”) was of EU member states, the European Food Safety Authority established in 1963. Codex is a joint agency of the FAO (Food (EFSA) found that the number one food safety concern was and Agriculture Office of the United Nations) and the WHO the misuse of antibiotics, hormones and steroids in farm (World Health Organisation). It is responsible for producing animals. This is, in part, related to the issue of growing antibiotic and maintaining the Codex Alimentarius: a compendium of resistance in humans as a result of their potential overuse in standards, guidelines and codes of practice relating to food animals. This level of concern and increasing awareness of safety. The legal framework for the authorisation, distribution the risks associated with veterinary residues entering the food and control of Veterinary Medicinal Products (VMPs) varies chain has led to many regulatory bodies increasing surveillance from country to country, but certain common principles activities for pharmaceutical and veterinary residues in food and apply which are described in the Codex guidelines.
    [Show full text]
  • A Single Standard to Determine Multi-Components
    molecules Article A Single Standard to Determine Multi-Components Method Coupled with Chemometric Methods for the Quantification, Evaluation and Classification of Notopterygii Rhizoma et Radix from Different Regions 1,2, 1, 1,2 1,2 1,2, Xie-An Yu y, Jin Li y, John Teye Azietaku , Wei Liu , Jun He * and Yan-Xu Chang 1,2,* 1 Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; [email protected] (X.-A.Y.); [email protected] (J.L.); [email protected] (J.T.A.); [email protected] (W.L.) 2 Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China * Correspondence: [email protected] (J.H.); [email protected] (Y.-X.C.); Tel./Fax: +86-22-59596163 (J.H. & Y.-X.C.) These authors contributed equally to this work. y Received: 1 September 2019; Accepted: 1 October 2019; Published: 3 October 2019 Abstract: An ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry is used to identify 33 compounds in Notopterygii rhizoma and radix, after which a single standard to determine multi-components method is established for the simultaneous determination of 19 compounds in Notopterygii rhizoma and radix using chlorogenic acid and notopterol as the internal standard. To screen the potential chemical markers among Notopterygii rhizoma and radix planted in its natural germination area and in others, the quantitative data of 19 compounds are analyzed via partial least-squares discriminant analysis (PLS–DA). Depending on the variable importance parameters (VIP) value of PLS–DA, six compounds are selected to be the potential chemical markers for the discrimination of Notopterygii rhizoma and radix planted in the different regions.
    [Show full text]