Baxter Equation, Symmetric Functions and Grothendieck Polynomials
hep-th/9306005 YANG - BAXTER EQUATION, SYMMETRIC FUNCTIONS AND GROTHENDIECK POLYNOMIALS SERGEY FOMIN Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts av., Cambridge, MA 02139-4307, U.S.A. and Theory of Algorithm Laboratory SPIIRAN, St.Petersburg, Russia ANATOL N. KIRILLOV L.P.T.H.E., University Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France and Steklov Mathematical Institute, Fontanka 27, St.Petersburg, 191011, Russia ABSTRACT New development of the theory of Grothendieck polynomials, basedonanexponential solution of the Yang-Baxter equation in the algebra of projectors are given. 1. Introduction. § The Yang-Baxter algebra is the algebra generated by operators hi(x) which satisfy the following relations (cf. [B], [F], [DWA]) h (x)h (y)=h (y)h (x); if i j 2; (1:1) i j j i | − |≥ hi(x)hi+1(x + y)hi(y)=hi+1(y)hi(x + y)hi+1(x): (1:2) The role the representations of the Yang-Baxter algebra play in the theory of quantum groups [Dr], [FRT], the theory of exactly solvable models in statistical mechanics [B], [F], [Ji], low-dimensional topology [DWA], [Jo], [RT], [KR], the theory of special functions [KR], [VK], and others branchers of mathematics (see, e.g., the survey [C]) is well-known. In this paper we continue to study (cf. [FK1], [FK2]) the connections between the Yang-Baxter algebra and the theory of symmetric functions and Schubert and Grothendieck polynomials. In fact, one can construct a family of symmetric functions 2 Sergey Fomin and Anatol N. Kirillov (in general with operator-valued coefficients) related with any integrable-by-quantum- inverse-scattering-method model [F].
[Show full text]