Combinatorial Topology and Applications to Quantum Field Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equivariant Geometric K-Homology with Coefficients
Equivariant geometric K-homology with coefficients Michael Walter Equivariant geometric K-homology with coefficients Diplomarbeit vorgelegt von Michael Walter geboren in Lahr angefertigt am Mathematischen Institut der Georg-August-Universität zu Göttingen 2010 v Equivariant geometric K-homology with coefficients Michael Walter Abstract K-homology is the dual of K-theory. Kasparov’s analytic version, where cycles are given by (ab- stract) elliptic operators over (not necessarily commutative) spaces, has proved to be an extremely powerful tool which, together with its bivariant generalization KK-theory, lies at the heart of many important results at the intersection of algebraic topology, functional analysis and geome- try. Independently, Baum and Douglas have proposed a geometric version of K-homology inspired by singular bordism. Cycles for this theory are given by vector bundles over compact Spinc- manifolds with boundary which map to the target, i.e. E f (M, BM) / (X, Y). There is a natural transformation to analytic K-homology defined by sending such a cycle to the pushforward of the class determined by the twisted Dirac operator. It is well-known to be an isomorphism, although a rigorous proof has appeared only recently. While both theories have obvious generalizations to the equivariant case and coefficients, the question whether these remain isomorphic is far from trivial (and has negative answer in the general case). In their work on equivariant correspondences Emerson and Meyer have isolated a useful sufficient condition for their theory which, while vastly more general, only deals with the absolute case. Our focus is not so much to construct a geometric theory in the most general situation, but to show that in the presence of a group action and coefficients the above picture still gives a generalized homology theory in a very geometrical way, isomorphic to Kasparov’s theory. -
Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu
Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu Notes for a topics in topology course, University of Notre Dame, Spring 2004, Spring 2013. Last revision: November 15, 2013 i The Atiyah-Singer Index Theorem This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera- tors on a compact manifold, namely those operators P with the property that dim ker P; dim coker P < 1. In general these integers are very difficult to compute without some very precise information about P . Remarkably, their difference, called the index of P , is a “soft” quantity in the sense that its determination can be carried out relying only on topological tools. You should compare this with the following elementary situation. m n Suppose we are given a linear operator A : C ! C . From this information alone we cannot compute the dimension of its kernel or of its cokernel. We can however compute their difference which, according to the rank-nullity theorem for n×m matrices must be dim ker A−dim coker A = m − n. Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator is determined by certain cohomology classes on the background manifold. These cohomology classes are in turn topological invariants of the vector bundles on which the differential operator acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that in order to understand the index problem for an arbitrary elliptic operator it suffices to understand the index problem for a very special class of first order elliptic operators, namely the Dirac type elliptic operators. -
Fermionic Finite-Group Gauge Theories and Interacting Symmetric
Fermionic Finite-Group Gauge Theories and Interacting Symmetric/Crystalline Orders via Cobordisms Meng Guo1;2;3, Kantaro Ohmori4, Pavel Putrov4;5, Zheyan Wan6, Juven Wang4;7 1Department of Mathematics, Harvard University, Cambridge, MA 02138, USA 2Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada 3Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada 4School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA 5 ICTP, Trieste 34151, Italy 6School of Mathematical Sciences, USTC, Hefei 230026, China 7Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA, USA Abstract We formulate a family of spin Topological Quantum Filed Theories (spin-TQFTs) as fermionic generalization of bosonic Dijkgraaf-Witten TQFTs. They are obtained by gauging G-equivariant invertible spin-TQFTs, or, in physics language, gauging the interacting fermionic Symmetry Protected Topological states (SPTs) with a finite group G symmetry. We use the fact that the latter are classified by Pontryagin duals to spin-bordism groups of the classifying space BG. We also consider unoriented analogues, that is G-equivariant invertible pin±-TQFTs (fermionic time-reversal-SPTs) and their gauging. We compute these groups for various examples of abelian G using Adams spectral sequence and describe all corresponding TQFTs via certain bordism invariants in dimensions 3, 4, and other. This gives explicit formulas for the partition functions of spin-TQFTs on closed manifolds with possible extended operators inserted. The results also provide explicit classification of 't Hooft anomalies of fermionic QFTs with finite abelian group symmetries in one dimension lower. We construct new anomalous boundary deconfined spin-TQFTs (surface fermionic topological orders). -
MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 21
MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 21 21. Applications of cup products in cohomology We are going to see some examples where we calculate or apply multiplicative structures on cohomology. But we start with a couple of facts we forgot to mention last time. Relative cup products Let (X;A) be a pair of spaces. The formula which specifies the cup product by its effect on a simplex (' [ )(σ) = '(σj[e0;:::;ep]) (σj[ep;:::;ep+q]) extends to relative cohomology. For, if σ : ∆p+q ! X has image in A, then so does any restriction of σ. Thus, if either ' or vanishes on chains with image in A, then so does ' [ . Hence we get relative cup product maps Hp(X; R) × Hq(X;A; R) ! Hp+q(X;A; R) Hp(X;A; R) × Hq(X; R) ! Hp+q(X;A; R) Hp(X;A; R) × Hq(X;A; R) ! Hp+q(X;A; R): More generally, assume we have two open subsets A and B of X. Then the formula for ' [ on cochains implies that cup product yields a map Sp(X;A; R) × Sq(X;B; R) ! Sp+q(X;A + B; R) where Sn(X;A+B; R) denotes the subgroup of Sn(X; R) of cochains which vanish on sums of chains in A and chains in B. The natural inclusion Sn(X;A [ B; R) ,! Sn(X;A + B; R) induces an isomorphism in cohomology. For we have a map of long exact coho- mology sequences Hn(A [ B) / Hn(X) / Hn(X;A [ B) / Hn+1(A [ B) / Hn+1(X) Hn(A + B) / Hn(X) / Hn(X;A + B) / Hn+1(A + B) / Hn+1(X) 1 2 where we omit the coefficients. -
Arxiv:1910.04634V1 [Math.DG] 10 Oct 2019 ˆ That E Sdnt by Denote Us Let N a En H Subbundle the Define Can One of Points Bundle
SPIN FRAME TRANSFORMATIONS AND DIRAC EQUATIONS R.NORIS(1)(2), L.FATIBENE(2)(3) (1) DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy (2)INFN Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy (3) Dipartimento di Matematica – University of Torino, via Carlo Alberto 10, I-10123 Torino, Italy Abstract. We define spin frames, with the aim of extending spin structures from the category of (pseudo-)Riemannian manifolds to the category of spin manifolds with a fixed signature on them, though with no selected metric structure. Because of this softer re- quirements, transformations allowed by spin frames are more general than usual spin transformations and they usually do not preserve the induced metric structures. We study how these new transformations affect connections both on the spin bundle and on the frame bundle and how this reflects on the Dirac equations. 1. Introduction Dirac equations provide an important tool to study the geometric structure of manifolds, as well as to model the behaviour of a class of physical particles, namely fermions, which includes electrons. The aim of this paper is to generalise a key item needed to formulate Dirac equations, the spin structures, in order to extend the range of allowed transformations. Let us start by first reviewing the usual approach to Dirac equations. Let (M,g) be an orientable pseudo-Riemannian manifold with signature η = (r, s), such that r + s = m = dim(M). R arXiv:1910.04634v1 [math.DG] 10 Oct 2019 Let us denote by L(M) the (general) frame bundle of M, which is a GL(m, )-principal fibre bundle. -
Homological Mirror Symmetry for the Genus 2 Curve in an Abelian Variety and Its Generalized Strominger-Yau-Zaslow Mirror by Cath
Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Denis Auroux, Chair Professor David Nadler Professor Marjorie Shapiro Spring 2019 Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror Copyright 2019 by Catherine Kendall Asaro Cannizzo 1 Abstract Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo Doctor of Philosophy in Mathematics University of California, Berkeley Professor Denis Auroux, Chair Motivated by observations in physics, mirror symmetry is the concept that certain mani- folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic geometry on Y . It allows one to deduce information about Y from known properties of X. Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra- tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich (1994) conjectured that a complex invariant on X (the bounded derived category of coherent sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This is known as homological mirror symmetry. In this project, we first use the construction of SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov, in order to obtain X and Y as manifolds. -
The Atiyah-Singer Index Theorem*
CHAPTER 5 The Atiyah-Singer Index Theorem* Peter B. Gilkey Mathematics Department, University of Oregon, Eugene, OR 97403, USA E-mail: gilkey@ math. uo regon, edu Contents 0. Introduction ................................................... 711 1. Clifford algebras and spin structures ..................................... 711 2. Spectral theory ................................................. 718 3. The classical elliptic complexes ........................................ 725 4. Characteristic classes of vector bundles .................................... 730 5. Characteristic classes of principal bundles .................................. 737 6. The index theorem ............................................... 739 References ..................................................... 745 *Research partially supported by the NSF (USA) and MPIM (Germany). HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL. I Edited by EJ.E. Dillen and L.C.A. Verstraelen 2000 Elsevier Science B.V. All fights reserved 709 The Atiyah-Singer index theorem 711 O. Introduction Here is a brief outline to the paper. In Section 1, we review some basic facts concerning Clifford algebras and spin structures. In Section 2, we discuss the spectral theory of self- adjoint elliptic partial differential operators and give the Hodge decomposition theorem. In Section 3, we define the classical elliptic complexes: de Rham, signature, spin, spin c, Yang-Mills, and Dolbeault; these elliptic complexes are all of Dirac type. In Section 4, we define the various characteristic classes for vector bundles that we shall need: Chern forms, Pontrjagin forms, Chern character, Euler form, Hirzebruch L polynomial, A genus, and Todd polynomial. In Section 5, we discuss the characteristic classes for principal bundles. In Section 6, we give the Atiyah-Singer index theorem; the Chern-Gauss-Bonnet formula, the Hirzebruch signature formula, and the Riemann-Roch formula are special cases of the index theorem. We also discuss the equivariant index theorem and the index theorem for manifolds with boundary. -
Algebraic Topology
ALGEBRAIC TOPOLOGY C.R. F. MAUNDER ALGEBRAIC TOPOLOGY C. R. F. MAUNDER Fellow of Christ's College and University Lecturer in Pure Mathematics, Cambridge CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge C82inP 32East 57th Street, New York, NYzoozz,USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia CC. R. F. Miunder '970 CCambridge University Press 1980 First published by VanNostrandReinhold (UK) Ltd First published by the Cambridge University Press 1980 Firstprinted in Great Britain by Lewis Reprints Ltd, London and Tonbridge Reprinted in Great Britain at the University Press, Cambridge British Library cataloguing in publication data Maunder, Charles Richard Francis Algebraic topology. r.Algebraic topology I. Title 514'.2QA6!2 79—41610 ISBN 0521 231612 hard covers ISBN 0 521298407paperback INTRODUCTION Most of this book is based on lectures to third-year undergraduate and postgraduate students. It aims to provide a thorough grounding in the more elementary parts of algebraic topology, although these are treated wherever possible in an up-to-date way. The reader interested in pursuing the subject further will find ions for further reading in the notes at the end of each chapter. Chapter 1 is a survey of results in algebra and analytic topology that will be assumed known in the rest of the book. The knowledgeable reader is advised to read it, however, since in it a good deal of standard notation is set up. Chapter 2 deals with the topology of simplicial complexes, and Chapter 3 with the fundamental group. -
The Arf-Kervaire Invariant Problem in Algebraic Topology: Introduction
THE ARF-KERVAIRE INVARIANT PROBLEM IN ALGEBRAIC TOPOLOGY: INTRODUCTION MICHAEL A. HILL, MICHAEL J. HOPKINS, AND DOUGLAS C. RAVENEL ABSTRACT. This paper gives the history and background of one of the oldest problems in algebraic topology, along with a short summary of our solution to it and a description of some of the tools we use. More details of the proof are provided in our second paper in this volume, The Arf-Kervaire invariant problem in algebraic topology: Sketch of the proof. A rigorous account can be found in our preprint The non-existence of elements of Kervaire invariant one on the arXiv and on the third author’s home page. The latter also has numerous links to related papers and talks we have given on the subject since announcing our result in April, 2009. CONTENTS 1. Background and history 3 1.1. Pontryagin’s early work on homotopy groups of spheres 3 1.2. Our main result 8 1.3. The manifold formulation 8 1.4. The unstable formulation 12 1.5. Questions raised by our theorem 14 2. Our strategy 14 2.1. Ingredients of the proof 14 2.2. The spectrum Ω 15 2.3. How we construct Ω 15 3. Some classical algebraic topology. 15 3.1. Fibrations 15 3.2. Cofibrations 18 3.3. Eilenberg-Mac Lane spaces and cohomology operations 18 3.4. The Steenrod algebra. 19 3.5. Milnor’s formulation 20 3.6. Serre’s method of computing homotopy groups 21 3.7. The Adams spectral sequence 21 4. Spectra and equivariant spectra 23 4.1. -
D-Branes, RR-Fields and Duality on Noncommutative Manifolds
D-BRANES, RR-FIELDS AND DUALITY ON NONCOMMUTATIVE MANIFOLDS JACEK BRODZKI, VARGHESE MATHAI, JONATHAN ROSENBERG, AND RICHARD J. SZABO Abstract. We develop some of the ingredients needed for string theory on noncommutative spacetimes, proposing an axiomatic formulation of T-duality as well as establishing a very general formula for D-brane charges. This formula is closely related to a noncommutative Grothendieck-Riemann-Roch theorem that is proved here. Our approach relies on a very general form of Poincar´eduality, which is studied here in detail. Among the technical tools employed are calculations with iterated products in bivariant K-theory and cyclic theory, which are simplified using a novel diagram calculus reminiscent of Feynman diagrams. Contents Introduction 2 Acknowledgments 3 1. D-Branes and Ramond-Ramond Charges 4 1.1. Flat D-Branes 4 1.2. Ramond-Ramond Fields 7 1.3. Noncommutative D-Branes 9 1.4. Twisted D-Branes 10 2. Poincar´eDuality 13 2.1. Exterior Products in K-Theory 13 2.2. KK-Theory 14 2.3. Strong Poincar´eDuality 16 2.4. Duality Groups 18 arXiv:hep-th/0607020v3 26 Jun 2007 2.5. Spectral Triples 19 2.6. Twisted Group Algebra Completions of Surface Groups 21 2.7. Other Notions of Poincar´eDuality 22 3. KK-Equivalence 23 3.1. Strong KK-Equivalence 24 3.2. Other Notions of KK-Equivalence 25 3.3. Universal Coefficient Theorem 26 3.4. Deformations 27 3.5. Homotopy Equivalence 27 4. Cyclic Theory 27 4.1. Formal Properties of Cyclic Homology Theories 27 4.2. Local Cyclic Theory 29 5. -
Combinatorial Topology
Chapter 6 Basics of Combinatorial Topology 6.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union of simple building blocks glued together in a “clean fashion”. The building blocks should be simple geometric objects, for example, points, lines segments, triangles, tehrahedra and more generally simplices, or even convex polytopes. We will begin by using simplices as building blocks. The material presented in this chapter consists of the most basic notions of combinatorial topology, going back roughly to the 1900-1930 period and it is covered in nearly every algebraic topology book (certainly the “classics”). A classic text (slightly old fashion especially for the notation and terminology) is Alexandrov [1], Volume 1 and another more “modern” source is Munkres [30]. An excellent treatment from the point of view of computational geometry can be found is Boissonnat and Yvinec [8], especially Chapters 7 and 10. Another fascinating book covering a lot of the basics but devoted mostly to three-dimensional topology and geometry is Thurston [41]. Recall that a simplex is just the convex hull of a finite number of affinely independent points. We also need to define faces, the boundary, and the interior of a simplex. Definition 6.1 Let be any normed affine space, say = Em with its usual Euclidean norm. Given any n+1E affinely independentpoints a ,...,aE in , the n-simplex (or simplex) 0 n E σ defined by a0,...,an is the convex hull of the points a0,...,an,thatis,thesetofallconvex combinations λ a + + λ a ,whereλ + + λ =1andλ 0foralli,0 i n. -
WEIGHT FILTRATIONS in ALGEBRAIC K-THEORY Daniel R
November 13, 1992 WEIGHT FILTRATIONS IN ALGEBRAIC K-THEORY Daniel R. Grayson University of Illinois at Urbana-Champaign Abstract. We survey briefly some of the K-theoretic background related to the theory of mixed motives and motivic cohomology. 1. Introduction. The recent search for a motivic cohomology theory for varieties, described elsewhere in this volume, has been largely guided by certain aspects of the higher algebraic K-theory developed by Quillen in 1972. It is the purpose of this article to explain the sense in which the previous statement is true, and to explain how it is thought that the motivic cohomology groups with rational coefficients arise from K-theory through the intervention of the Adams operations. We give a basic description of algebraic K-theory and explain how Quillen’s idea [42] that the Atiyah-Hirzebruch spectral sequence of topology may have an algebraic analogue guides the search for motivic cohomology. There are other useful survey articles about algebraic K-theory: [50], [46], [23], [56], and [40]. I thank W. Dwyer, E. Friedlander, S. Lichtenbaum, R. McCarthy, S. Mitchell, C. Soul´e and R. Thomason for frequent and useful consultations. 2. Constructing topological spaces. In this section we explain the considerations from combinatorial topology which give rise to the higher algebraic K-groups. The first principle is simple enough to state, but hard to implement: when given an interesting group (such as the Grothendieck group of a ring) arising from some algebraic situation, try to realize it as a low-dimensional homotopy group (especially π0 or π1) of a space X constructed in some combinatorial way from the same algebraic inputs, and study the homotopy type of the resulting space.