A Marine Diterpenoid Modulates the Proteasome Activity in Murine Macrophages Stimulated with LPS

Total Page:16

File Type:pdf, Size:1020Kb

A Marine Diterpenoid Modulates the Proteasome Activity in Murine Macrophages Stimulated with LPS biomolecules Article A Marine Diterpenoid Modulates the Proteasome Activity in Murine Macrophages Stimulated with LPS Yisett González 1, Deborah Doens 1,Héctor Cruz 1,2, Ricardo Santamaría 3, Marcelino Gutiérrez 3 , Alejandro Llanes 1,* and Patricia L. Fernández 1,* 1 Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP),Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá; [email protected] (Y.G.); [email protected] (D.D.); [email protected] (H.C.) 2 Facultad de Ciencias de la Salud Dr. William C. Gorgas, Universidad Latina de Panamá, 0801 Panamá, Panamá 3 Centro de Biodiversidad y Descubrimiento de Drogas, INDICASAT AIP, Edificio 219, Ciudad del Saber, 0801 Panamá, Panamá; [email protected] (R.S.); [email protected] (M.G.) * Correspondence: [email protected] (A.L.); [email protected] (P.L.F.), Tel.: +507-517-0739 Received: 13 August 2018; Accepted: 1 October 2018; Published: 5 October 2018 Abstract: The proteasome is an intracellular complex that degrades damaged or unfolded proteins and participates in the regulation of several processes. The immunoproteasome is a specialized form that is expressed in response to proinflammatory signals and is particularly abundant in immune cells. In a previous work, we found an anti-inflammatory effect in a diterpenoid extracted from the octocoral Pseudopterogorgia acerosa, here called compound 1. This compound prevented the degradation of inhibitor κB α (IκBα) and the subsequent activation of nuclear factor κB (NFκB), suggesting that this effect might be due to inhibition of the ubiquitin-proteasome system. Here we show that compound 1 inhibits the proteasomal chymotrypsin-like activity (CTL) of murine macrophages in the presence of lipopolysaccharide (LPS) but not in its absence. This effect might be due to the capacity of this compound to inhibit the activity of purified immunoproteasome. The compound inhibits the cell surface expression of major histocompatibility complex (MHC)-I molecules and the production of proinflammatory cytokines induced by LPS in vitro and in vivo, respectively. Molecular docking simulations predicted that compound 1 selectively binds to the catalytic site of immunoproteasome subunits β1i and β5i, which are responsible for the CTL activity. Taken together these findings suggest that the compound could be a selective inhibitor of the immunoproteasome, and hence could pave the way for its future evaluation as a candidate for the treatment of inflammatory disorders and autoimmune diseases. Keywords: marine diterpenoid; proteasome inhibitors; immunoproteasome 1. Introduction The proteasome is an enzymatic complex found in the nucleus and cytoplasm of eukaryotic cells, archaea and certain bacteria. This complex is responsible for the degradation of intracellular proteins that are damaged or misfolded. It works in collaboration with the ubiquitin system, which tags proteins for proteasome processing. The proteasome plays an important role in the regulation of many cellular processes, such as the cell cycle, the defense against oxidative stress and inflammatory responses. The proteasome is composed of two types of domains: a core particle and one or two regulatory domains. The core particle is formed by four stacking rings, each of them consisting of seven α or β subunits. Central rings have three catalytic subunits, namely β1, β2 and β5, which have caspase-like, trypsin-like and chymotrypsin-like (CTL) activity, respectively. An alternative form Biomolecules 2018, 8, 109; doi:10.3390/biom8040109 www.mdpi.com/journal/biomolecules Biomolecules 2018, 8, 109 2 of 17 of the proteasome, called immunoproteasome, is present in most animal cells but it is abundantly expressed in immune cells, where its primary role is to process proteins for antigen presentation by major histocompatibility complex (MHC) class I molecules [1,2]. Expression of the immunoproteasome is induced by interferon-γ (IFN-γ), tumor necrosis factor (TNF) and bacterial lipopolysaccharide (LPS) under inflammatory conditions, such as infections or autoimmune diseases [3–5]. In the presence of such stimuli, catalytic subunits of the constitutive form are respectively substituted by inducible subunits β1i (LPM2), β2i (MECL-1) and β5i (LMP7) to form the immunoproteasome. Unlike its constitutive counterparts, which have caspase-like activity, the β1i subunit also has CTL activity [6,7]. The proteasome has been implicated as a modulator of inflammatory responses by participating in the activation of nuclear factor κB (NFκB), a transcription factor that regulates the expression of many genes involved in inflammation [8]. Five NFκB family members have been described, namely RelA (p65), RelB, cRel, p50 and p52, respectively encoded by genes rela, relb, crel, nfkb1 and nfkb2. After the stimulus, NFκB proteins form dimers, which bind to κB sites on target genes either as homodimers or heterodimers. In resting cells, NFκB is sequestered in the cytoplasm by inhibitor κB (IκB) proteins. Activation of NFκB is triggered by phosphorylation of IκB, followed by its ubiquitination and proteasomal degradation, thus releasing NFκB and promoting its translocation into the nucleus [9]. It has been demonstrated that the immunoproteasome subunit β1i is involved in the proteolytic processing of NFκB precursor proteins (p100/p105), as well as in the degradation of inhibitor κB α (IκBα)[10–12]. Later, it was observed that β1i-deficient retinal pigment epithelial cells exhibited diminished activation of NFκB in response to TNF [13]. However, the role of the immunoproteasome in NFκB activation and in the degradation of IκB proteins is still under debate [10,14–17]. Other studies have demonstrated that immunoproteasome subunits are not essential in the activation of NFκB either in cancer cell lines or in peritoneal macrophages stimulated with TNF [17,18]. Due to the role of the proteasome in many physiological processes, it has become a major target for the design of new drugs as a therapeutic for several diseases. Many proteasome inhibitors have been identified from natural and synthetic sources. Two of them, bortezomib and carfilzomib, are currently approved for the treatment of multiple myeloma. Although a number of second-generation proteasome inhibitors are in clinical trials [19], undesirable side effects have been associated to these molecules. The immunoproteasome has emerged as a therapeutic target and as a strategy to reduce the toxicity associated with the inhibition of the constitutive proteasome in cells [20,21]. These molecules are not only valuable as potential therapeutics but would also allow a better understanding of the physiological roles attributed to the immunoproteasome. Several highly selective immunoproteasome inhibitors have been recently described, including both peptidic [22] and nonpeptidic inhibitors [23]. In previous studies, we have shown a marked anti-inflammatory activity for a pseudopterane diterpene (compound 1) isolated from the octocoral Pseudopterogorgia acerosa [16]. Compound 1 inhibited the production and expression of proinflammatory mediators in macrophages stimulated with LPS, TNF and other toll-like receptor ligands. Our results showed that this anti-inflammatory effect is due to the inhibition of IκBα degradation and the subsequent activation of NFκB. We then analyzed if the effect of compound 1 might be influenced by a modulation of the ubiquitin-proteasome system, affecting the proteasomal degradation of phosphorylated IκBα. We show herein that compound 1 inhibits the CTL activity of the proteasome induced by LPS in vitro and reduces the expression of MHC class I in macrophages. This inhibitory effect might occur by a mechanism that involved the modulation of immunoproteasome activity, since a reduction in the CTL activity of the purified immunoproteasome was observed. In vivo, compound 1 reduces the production of proinflammatory mediators in the lung of animals treated by intranasal inoculation of LPS. Molecular docking simulations predicted that compound 1 preferentially interacts with the catalytic site of subunits β1i and β5i, suggesting that the effect of this compound might be dependent on immunoproteasome activity. Biomolecules 2018, 8, 109 3 of 17 2. Materials and Methods 2.1. Mice In vivo studies were carried out by using female C57Bl/6 mice with an age of eight weeks, obtained from Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT)’s mouse facility. Mice were kept at 25 ◦C under a light/dark cycle of 12 h and had free access to food and water. All experiments were performed in accordance with guidelines from the Institutional Animal Welfare Committee and the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was also approved by the Institutional Animal Care and Use Committee of INDICASAT AIP (IACUC-15-004). 2.2. Acute Pulmonary Inflammation C57BL/6 mice (n = 5) were anesthetized with Ketamine/Xylazine (93/6 mg/Kg) and then treated by intranasal inoculation with lipopolysaccharide (LPS) from Escherichia coli 0111:B4 (Sigma Aldrich, Saint Louis, MO, USA) (0.5 mg/Kg) or saline for control group. Compound 1 (5 mg/Kg) was administered by intraperitoneal (i.p.) injection 2 h before and 10 h after LPS administration. The control group was not treated with compound 1. Mice were euthanized 24 h after the challenge with LPS and the concentrations of tumor necrosis factor (TNF) and interleukin
Recommended publications
  • On the Role of the Immunoproteasome in Transplant Rejection
    Immunogenetics (2019) 71:263–271 https://doi.org/10.1007/s00251-018-1084-0 REVIEW On the role of the immunoproteasome in transplant rejection Michael Basler1,2 & Jun Li1,3 & Marcus Groettrup1,2 Received: 17 July 2018 /Accepted: 4 September 2018 /Published online: 15 September 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The immunoproteasome is expressed in cells of hematopoietic origin and is induced during inflammation by IFN-γ. Targeting the immunoproteasome with selective inhibitors has been shown to be therapeutically effective in pre-clinical models for autoim- mune diseases, colitis-associated cancer formation, and transplantation. Immunoproteasome inhibition prevents activation and proliferation of lymphocytes, lowers MHC class I cell surface expression, reduces the expression of cytokines of activated immune cells, and curtails T helper 1 and 17 cell differentiation. This might explain the in vivo efficacy of immunoproteasome inhibition in different pre-clinical disease models for autoimmunity, cancer, and transplantation. In this review, we summarize the effect of immunoproteasome inhibition in different animal models for transplantation. Keywords Proteasome . Immunoproteasome . Antigen processing . Antigen presentation . Transplantation Introduction et al. 2012). Depending on the cell type and the presence or absence of the pro-inflammatory cytokine interferon (IFN)-γ, The proteasome is responsible for the degradation of proteins the three inducible β subunits of the immunoproteasome low in the cytoplasm and nuclei of all eukaryotic cells and exerts molecular mass polypeptide (LMP)2 (β1i), multicatalytic en- numerous essential regulatory functions in nearly all cell bio- dopeptidase complex-like (MECL)-1 (β2i), and LMP7 (β5i), logical pathways. The 26S proteasome degrades poly- can, in addition to the corresponding constitutive subunits ubiquitylated protein substrates and consists of a 19S regulator β1c, β2c, and β5c, enrich the cellular assortment of catalyti- and a 20S proteolytic core complex.
    [Show full text]
  • The Role of the Immunoproteasome in Interferon-Γ-Mediated Microglial Activation Received: 4 May 2017 Kasey E
    www.nature.com/scientificreports OPEN The role of the immunoproteasome in interferon-γ-mediated microglial activation Received: 4 May 2017 Kasey E. Moritz1, Nikki M. McCormack1, Mahlet B. Abera2, Coralie Viollet3, Young J. Yauger1, Accepted: 14 July 2017 Gauthaman Sukumar3, Clifton L. Dalgard1,2,3,4 & Barrington G. Burnett 1,2 Published: xx xx xxxx Microglia regulate the brain microenvironment by sensing damage and neutralizing potentially harmful insults. Disruption of central nervous system (CNS) homeostasis results in transition of microglia to a reactive state characterized by morphological changes and production of cytokines to prevent further damage to CNS tissue. Immunoproteasome levels are elevated in activated microglia in models of stroke, infection and traumatic brain injury, though the exact role of the immunoproteasome in neuropathology remains poorly defned. Using gene expression analysis and native gel electrophoresis we characterize the expression and assembly of the immunoproteasome in microglia following interferon-gamma exposure. Transcriptome analysis suggests that the immunoproteasome regulates multiple features of microglial activation including nitric oxide production and phagocytosis. We show that inhibiting the immunoproteasome attenuates expression of pro-infammatory cytokines and suppresses interferon-gamma-dependent priming of microglia. These results imply that targeting immunoproteasome function following CNS injury may attenuate select microglial activity to improve the pathophysiology of neurodegenerative conditions or the progress of infammation-mediated secondary injury following neurotrauma. Microglia are the primary infammatory mediators of the central nervous system (CNS). Damage to the CNS results in the transition of microglia from a surveying or ‘ramifed’ state, to a ‘reactive’ state, allowing them to respond to changes in the local milieu1–3.
    [Show full text]
  • The Role of the Immunoproteasome in Inflammatory Bowel Disease
    The role of the immunoproteasome in inflammatory bowel disease vorgelegt von Dipl. Biochemikerin Nicole Schmidt zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften (Dr. rer. nat.) von der Fakult¨atIII - Prozesswissenschaften der Technischen Universit¨atBerlin genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. J. Kurreck Berichter: Prof. Dr. R. Lauster Berichter: PD Dr. U. Steinhoff Tag der wissenschaftlichen Aussprache: 16.04.2010 Berlin 2010 D83 1 2 Anybody who has been seriously engaged is scientific work of any kind realizes that over the entrance to the gates of the temple of science are written the words: 'Ye must have faith.' (Max Planck) 3 Content 1 Abstract 5 1.1 Deutsch . .5 1.2 English . .6 2 Introduction 7 2.1 The gastrointestinal immune system . .7 2.2 Inflammatory bowel disease . 10 2.2.1 Basis of inflammatory bowel disease . 10 2.2.2 Immune dysfunction in inflammatory bowel disease . 12 2.2.3 Treatment strategies for inflammatory bowel disease . 15 2.3 The proteasome system . 17 2.3.1 Function of the proteasome . 17 2.3.2 Proteasome structure . 19 2.4 The proteasome and inflammation . 22 2.4.1 Proteasome-mediated regulation of NF-κB.............. 22 2.4.2 The role of the proteasome in IBD . 26 2.4.3 Inhibitors of the proteasome . 27 2.5 The lmp7 knockout mouse . 29 2.6 Dextran sulfate sodium (DSS)-induced colitis model . 29 3 Aim of the study 31 4 Material and methods 32 4.1 Materials . 32 4.1.1 Antibodies . 32 4.2 Methods . 32 4.2.1 Mice . 32 4.2.2 Dextran sulfate sodium (DSS) induced colitis model .
    [Show full text]
  • The Intermediate Proteasome Is Constitutively Expressed in Pancreatic Beta Cells And
    bioRxiv preprint doi: https://doi.org/10.1101/753061; this version posted August 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The intermediate proteasome is constitutively expressed in pancreatic beta cells and 2 upregulated by stimulatory, non-toxic concentrations of interleukin 1 3 4 Muhammad Saad Khilji1, Danielle Verstappen1,2, Tina Dahlby1, Michala Cecilie Burstein Prause3, 5 Celina Pihl1, Sophie Emilie Bresson1, Tenna Holgersen Bryde1, Kristian Klindt1, Dusan Zivkovic4, 6 Marie-Pierre Bousquet-Dubouch4, Björn Tyrberg5, Nils Billestrup3, Thomas Mandrup-Poulsen1, 7 Michal Tomasz Marzec1* 8 9 Affiliations 10 1 Laboratory of Immuno-endocrinology, Inflammation, Metabolism and Oxidation Section, 11 Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark 12 2 Radboud Universiteit, Nijmegen, Netherlands 13 3 Section for Beta-cell Biology, Department of Biomedical Sciences, University of Copenhagen, 14 Copenhagen, Denmark 15 4 Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche 16 Scientifique, Université de Toulouse, 31077 Toulouse, France 17 5 Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, 18 University of Gothenburg, Gothenburg, Sweden 19 20 Short title: The intermediate proteasome expression in pancreatic beta cells. 21 22 *Corresponding author 23 Associate Professor Michal Tomasz Marzec M.D., PhD. 24 Postal Address: Panum Institute 12.6.8, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark 25 Phone: +45 25520256 26 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/753061; this version posted August 30, 2019.
    [Show full text]
  • Inhibition of the Immunoproteasome Subunit LMP7 with ONX&Nbsp
    Biol Blood Marrow Transplant 21 (2015) 1555e1564 Biology of Blood and Marrow Transplantation journal homepage: www.bbmt.org Biology Inhibition of the Immunoproteasome Subunit LMP7 with ONX 0914 Ameliorates Graft-versus-Host Disease in an MHC-Matched Minor Histocompatibility AntigeneDisparate Murine Model Jenny Zilberberg 1,*, Jennifer Matos 1, Eugenia Dziopa 1, Leah Dziopa 1, Zheng Yang 1, Christopher J. Kirk 2, Shahin Assefnia 3, Robert Korngold 1 1 John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey 2 Onyx Pharmaceuticals, South San Francisco, California 3 Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC Article history: abstract Received 24 March 2015 In the current study we evaluated the effects of immunoproteasome inhibition using ONX 0914 (formerly Accepted 12 June 2015 PR-957) to ameliorate graft-versus-host disease (GVHD). ONX 0914, an LMP7-selective epoxyketone inhibitor of the immunoproteasome, has been shown to reduce cytokine production in activated monocytes and T cells Key Words: and attenuate disease progression in mouse models of rheumatoid arthritis, colitis, systemic lupus erythe- Immunoproteasome matosus, and, more recently, encephalomyelitis. Inhibition of LMP7 with ONX 0914 in the B10.BR/CBA MHC- GVHD matched/minor histocompatibility antigen (miHA)-disparate murine blood and marrow transplant (BMT) Murine models model caused a modest but significant improvement in the survival of mice experiencing GVHD. Concomitant BMT with these results, in vitro mixed lymphocyte cultures revealed that stimulator splenocytes, but not responder T cells, treated with ONX 0914 resulted in decreased IFN-g production by allogeneic T cells in both MHC-disparate (B10.BR anti-B6) and miHA-mismatched (B10.BR anti-CBA) settings.
    [Show full text]
  • Cilvēka 14.Hromosomas Proteasomu Gēnu Polimorfismu Saistība Ar Metaboliskām Un Autoimūnām Slimībām
    Latvijas Universit āte Medic īnas fakult āte Cilv ēka 14.hromosomas proteasomu gēnu polimorfismu saist ība ar metabolisk ām un autoim ūnām slim ībām PROMOCIJAS DARBS Darba autors: Ilva Trapi Ħa (dzimusi Poudžiunas) stud. apl. Nr.: Dokt06004 Darba vad ītājs: Dr.habil.biol, prof. Nikolajs Sjakste Recenzenti: Dr.med. Gustavs Latkovskis Dr. med. Rita Lugovska Prof. Elza Husnutdinova RĪGA, 2010 SATURS KOPSAVILKUMS..........................................................................................................................6 SUMMARY ....................................................................................................................................7 IEVADS ..........................................................................................................................................8 1. LITERAT ŪRAS APSKATS ...................................................................................................11 1.1. 2. TIPA CUKURA DIAB ĒTS ...................................................................................................11 1.1.1. Slim ības pato ăen ēze un izplat ība .............................................................................11 1.1.2. 2.tipa cukura diab ēta molekul ārā ăen ētika ...............................................................12 1.2. JUVEN ĪLAIS IDIOP ĀTISKAIS ARTR ĪTS ................................................................................16 1.2.1. Slim ības pato ăen ēze un izplat ība .............................................................................16
    [Show full text]
  • Immunoproteasome-Dependent Epitopes Enhances Presentation Of
    Heat Shock Up-Regulates lmp2 and lmp7 and Enhances Presentation of Immunoproteasome-Dependent Epitopes This information is current as Margaret K. Callahan, Elizabeth A. Wohlfert, Antoine of September 25, 2021. Ménoret and Pramod K. Srivastava J Immunol 2006; 177:8393-8399; ; doi: 10.4049/jimmunol.177.12.8393 http://www.jimmunol.org/content/177/12/8393 Downloaded from References This article cites 30 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/177/12/8393.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Heat Shock Up-Regulates lmp2 and lmp7 and Enhances Presentation of Immunoproteasome-Dependent Epitopes1 Margaret K. Callahan,2 Elizabeth A. Wohlfert, Antoine Me´noret, and Pramod K. Srivastava The heat shock response is a canonical regulatory pathway by which cellular stressors such as heat and oxidative stress alter the expression of stress-responsive genes.
    [Show full text]
  • Neurotoxicology 73 (2019) 112–119
    Neurotoxicology 73 (2019) 112–119 Contents lists available at ScienceDirect Neurotoxicology journal homepage: www.elsevier.com/locate/neuro Full Length Article Activation of the immunoproteasome protects SH-SY5Y cells from the toxicity of rotenone T Congcong Suna, Mingshu Mob, Yun Wangc, Wenfei Yua, Chengyuan Songa, Xingbang Wanga, ⁎ Si Chena, Yiming Liua,d, a Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, China b Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China c Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China d Brain Science Research Institute, Shandong University, Jinan, 250012, China ARTICLE INFO ABSTRACT Keywords: This study investigated the expression and role of immunoproteasome (i-proteasome) in a cell model of Immunoproteasome Parkinson’s disease (PD). The cytotoxicity of rotenone was measured by CCK-8 assay. The i-proteasome β1i PSMB9 subunit PSMB9 was suppressed by a specific shRNA or transfected with an overexpression plasmid in the SH- ’ Parkinson s disease SY5Y cells. Under the exposure to rotenone or not, the expression of constitutive proteasome β subunits, i- Rotenone proteasome βi subunits, antigen presentation related proteins, α-syn and TH were detected by Western blot in PSMB9-silenced or -overexpressed cells, and the proteasomal activities were detected by fluorogenic peptide substrates. The location of i-proteasome βi subunits and α-syn were detected by immunofluorescence staining. The levels of ROS, GSH and MDA were measured by commercial kits. Cell apoptosis was detected by flow cytometry. Besides impairing the constitutive proteasomes, rotenone induced the expression of βi subunits of i- proteasome and antigen presentation related proteins such as TAP1, TAP2 and MHC-I.
    [Show full text]
  • Pa28αβ: the Enigmatic Magic Ring of the Proteasome?
    Biomolecules 2014, 4, 566-584; doi:10.3390/biom4020566 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Review PA28: The Enigmatic Magic Ring of the Proteasome? Paolo Cascio Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy; E-Mail: [email protected]; Tel.: +39-011-670-9113; Fax: +39-011-670-9138 Received: 4 April 2014; in revised form: 15 May 2014 / Accepted: 8 June 2014 / Published: 19 June 2014 Abstract: PA28 is a -interferon-induced 11S complex that associates with the ends of the 20S proteasome and stimulates in vitro breakdown of small peptide substrates, but not proteins or ubiquitin-conjugated proteins. In cells, PA28 also exists in larger complexes along with the 19S particle, which allows ATP-dependent degradation of proteins; although in vivo a large fraction of PA28 is present as PA28-20S particles whose exact biological functions are largely unknown. Although several lines of evidence strongly indicate that PA28 plays a role in MHC class I antigen presentation, the exact molecular mechanisms of this activity are still poorly understood. Herein, we review current knowledge about the biochemical and biological properties of PA28 and discuss recent findings concerning its role in modifying the spectrum of proteasome’s peptide products, which are important to better understand the molecular mechanisms and biological consequences of PA28 activity. Keywords: PA28; proteasomes; immunoproteasomes; protein degradation; MHC class I antigen presentation; epitopes; antigenic peptides 1. MHC Class I Antigen Presentation The continual presentation of intracellular proteins fragments on major histocompatibility complex (MHC) class I molecules is a process that allows cytotoxic CD8+ T lymphocytes (CTLs) to identify and selectively eliminate cells that synthesize foreign (e.g., viral) or abnormal (e.g., oncogene products) proteins [1,2].
    [Show full text]
  • Differentiation and Th17 but Enhances Regulatory T Cell Deficiency And
    Immunoproteasome Subunit LMP7 Deficiency and Inhibition Suppresses Th1 and Th17 but Enhances Regulatory T Cell Differentiation This information is current as of September 28, 2021. Khalid W. Kalim, Michael Basler, Christopher J. Kirk and Marcus Groettrup J Immunol 2012; 189:4182-4193; Prepublished online 14 September 2012; doi: 10.4049/jimmunol.1201183 Downloaded from http://www.jimmunol.org/content/189/8/4182 Supplementary http://www.jimmunol.org/content/suppl/2012/09/14/jimmunol.120118 http://www.jimmunol.org/ Material 3.DC1 References This article cites 47 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/189/8/4182.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Immunoproteasome Subunit LMP7 Deficiency and Inhibition Suppresses Th1 and Th17 but Enhances Regulatory T Cell Differentiation Khalid W.
    [Show full text]
  • PSMB8) Mutation Causes the Autoinflammatory Disorder, Nakajo-Nishimura Syndrome
    Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome Kazuhiko Arimaa,1, Akira Kinoshitab,1, Hiroyuki Mishimab,1, Nobuo Kanazawac,1, Takeumi Kanekod, Tsunehiro Mizushimae, Kunihiro Ichinosea, Hideki Nakamuraa, Akira Tsujinof, Atsushi Kawakamia, Masahiro Matsunakac, Shimpei Kasagig, Seiji Kawanog, Shunichi Kumagaig, Koichiro Ohmurah, Tsuneyo Mimorih, Makito Hiranoi, Satoshi Uenoi, Keiko Tanakaj, Masami Tanakak, Itaru Toyoshimal, Hirotoshi Suginom, Akio Yamakawan, Keiji Tanakao, Norio Niikawap, Fukumi Furukawac, Shigeo Muratad, Katsumi Eguchia, Hiroaki Idaa,q,2, and Koh-ichiro Yoshiurab,2 aUnit of Translational Medicine, Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; bDepartment of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; cDepartment of Dermatology, Wakayama Medical University, Wakayama 641-0012, Japan; dLaboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; eDepartment of Life Science, Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan; fUnit of Translational Medicine, Department of Neuroscience and Neurology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501; gDepartment of Clinical Pathology and Immunology, Kobe University
    [Show full text]
  • Ubiquitin-Proteasome System in Neurodegenerative Disorders
    b Meta olis g m & ru D T o f x o i Journal of Drug Metabolism and l c a o n l o Rao G et al., J Drug Metab Toxicol 2015, 6:4 r g u y o J Toxicology DOI: 10.4172/2157-7609.1000187 ISSN: 2157-7609 Review Article Open Access Ubiquitin-Proteasome System in Neurodegenerative Disorders Geeta Rao*, Brandon Croft, Chengwen Teng and Vibhudutta Awasthi Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK, USA *Corresponding author: Geeta Rao, Department of Pharmaceutical Sciences, 1110 North Stonewall Avenue, Oklahoma City, OK 73117, USA, Tel: 405-271-6593; Fax: 405-271-7505; E-mail: [email protected] Received date: June 24,2015, Accepted date: August 5,2015, Published date: August 13,2015 Copyright: © 2015 Rao G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Cellular proteostasis is a highly dynamic process and is primarily carried out by the degradation tools of ubiquitin- proteasome system (UPS). Abnormalities in UPS function result in the accumulation of damaged or misfolded proteins which can form intra- and extracellular aggregated proteinaceous deposits leading to cellular dysfunction and/or death. Deposition of abnormal protein aggregates and the cellular inability to clear them have been implicated in the pathogenesis of a number of neurodegenerative disorders such as Alzheimer’s and Parkinson’s. Contrary to the upregulation of proteasome function in oncogenesis and the use of proteasome inhibition as a therapeutic strategy, activation of proteasome function would serve therapeutic objectives of treatment of neurodegenerative diseases.
    [Show full text]