GMT Science Book 2018

Total Page:16

File Type:pdf, Size:1020Kb

GMT Science Book 2018 CHAPTER 2 Exoplanets & Planet Formation Are we alone in the universe? Astronomers have discovered thousands of planets orbiting other stars. Their sheer number and amazing diversity—from lava-worlds to super-Jupiters—give us a new perspective on our place in the universe. We now know that Earth is just one rocky planet amongst billions in the galaxy, and that planets range at least from 1/10th to 10,000 times the mass of Earth. Rocky planets that orbit their stars at just the right distance could be temperate enough to allow for the presence of seas of liquid water. Our nearest neighboring star, Proxima Centauri, likely hosts one such planet, but detecting biosignatures on exoplanets is extremely challenging because they are so much fainter than their host stars. The GMT’s sensitivity, resolution, and spectroscopic capabilities will enable us to understand the origins of the wide range of planetary systems we see in the galaxy around us. We will be able to measure the physical properties of those planets to learn if they contain life and to compare our solar system to its neighbors. Chapter Authors Alycia Weinberger (Carnegie Institution for Science, Department of Terrestrial Magnetism) Jayne Birkby (University of Amsterdam) Brendan Bowler (The University of Texas at Austin) Mercedes López-Morales (Harvard-Smithsonian Center for Astrophysics) Jared Males (University of Arizona) Katie Morzinski (University of Arizona) Sharon Wang (Carnegie Institution for Science, Department of Terrestrial Magnetism) CHAPTER 2 Exoplanets & Planet Formation 2 2.0 Exoplanets and Planet Formation Perhaps the most profound and enduring question over all of human history is whether life exists elsewhere in the universe. It is only in the past two decades that we have learned for certain that there are planets orbiting other stars—thousands of them. Earth is likely one rocky planet amongst billions; every star in the galaxy could have a rocky planet (Sumi et al. 2011). Present thinking is that our best chance of finding life is on rocky planets like Earth with liquid water on their surface. Such habitable planets must orbit their stars at the correct distance to maintain a surface temperature near 300 K; remarkably, our nearest stellar neighbor, Proxima Cen, hosts one such planet (Anglada-Escudé et al. 2016). The GMT will make revolutionary exoplanet discoveries. Radial velocity measurements, transit and direct imaging observations, and microlensing surveys have all contributed to finding these thousands of known exoplanets. These techniques will continue to be productive in the next decade, but a larger telescope is crucial to assembling a representative sample of planetary systems and measuring the surface conditions on the most intriguing planets, like those that most resemble the Earth. New space missions such as NASA’s Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2016), should discover dozens of Earth-sized worlds in the habitable zones of neighboring stars, a rich sample we can probe with the GMT’s unique instruments for high resolution spectroscopy and imaging in visible and infrared wavelengths. The sheer number and diversity of the known exoplanets helps us to appreciate our place in the universe. We have discovered planets with masses as small as Mars and as large as 10,000 Earth masses, and with orbits almost as small as their parent stars to even larger than our solar system. In addition to individual planets, we have also discovered a remarkable variety of exoplanetary systems that are quite different from our own. In some, multiple rocky planets orbit their stars in a space smaller than the terrestrial planet zone of our solar system. The challenge is to understand how this remarkable panoply of systems formed and whether planets frequently form with the inventories of elements necessary for life. Observations with the GMT will allow us to determine the densities and atmospheric compositions of these planets and to discover whether any are truly Earth-like. Earth-sized planets with Earth-like temperatures are common but we have yet to learn if they have Earth or Venus-like atmospheres or no atmospheres at all. Their atmospheres may contain water and even oxygen, key signatures for life on present-day Earth. If past exoplanet studies are any guide, we should expect to be surprised by the variety of atmospheres we discover. Mature planets are key targets, but protoplanetary systems—where planets are born—are also critical targets if we are to understand the great variety of the worlds we see. Disks of gas and dust with sufficient mass to form a planetary system like our own surround more than 80% of young, Sun-like stars. The GMT is essential to studying these young stars because they are found farther away than mature systems. We will learn about planet formation by studying circumstellar disks that are still forming planets, a process that appears to last for a few million years, and by attempting to connect the origins of these protoplanets to the properties of mature planets orbiting older stars. The frequency of planets and multi-planet systems derived from current surveys, particularly NASA’s Kepler mission, provides insight into planet formation mechanisms. The migration of solid material during planet formation will PAGE 32 The Giant Magellan Telescope Science Book 2018 Exoplanets & Planet Formation 2 CHAPTER determine the final masses, locations, and compositions of planets, but the physics of planetesimal growth and migration is poorly understood. The origins of the planets, asteroids and comets in our own solar system are also uncertain. Neptune must have migrated into the Kuiper Belt to generate the population seen there today (Hahn & Malhotra 2005), but perhaps Jupiter and Saturn also migrated substantially from their birth locations (Gomes et al. 2005). Using the GMT to study the chemical makeup of small bodies in the solar system—the Kuiper Belt and beyond—will answer many questions about the birth of our world and its siblings. The planet formation process must be capable of producing the wide variety of known planets; this variety will only increase with new discoveries. We estimate that 50% of Sun-like stars host a planet with a radius less than four times that of the Earth and an orbital period less than 100 days (Fressin et al. 2013; Petigura et al. 2013; Foreman-Mackey et al. 2014). Although the most common type of planet discovered so far is a mini-Neptune with a short orbital period, we do not know if such planets are common in the habitable zone and beyond. Giant planets are apparently rare, but they may provide important clues about the formation of planetary systems. Planets larger than Earth may form from condensed ices far from the star. The traditionally hypothesized mechanism of planet growth by accretion cannot form the massive planets found at large distances from solar-type and low-mass stars. Instead, self-gravitating cores may collapse to become giant planets (Boss 1997). In the following discussion, we will explain how the GMT will contribute to our search for other worlds and other life, and how they came to be. Section 2.1 will focus on the characterization of extrasolar planets, including measurements of mass, density, and atmospheric composition. Section 2.2 will focus on the formation of planets and how observations of the gas and dust disks that surround young stars will answer the fundamental questions of planet formation and planet diversity. 2.1 Toward Earth: Planet Characterization The GMT will study the demographics of mass and composition for small planets, especially Earth-sized and smaller, the occurrence rates of small planets with orbital periods longer than 100 days and, in particular, the frequency of Earth-analogs and super-Earths inside the habitable zones of stars (see Figure 2-1). We know little about the nature of planets receiving stellar energy similar to what the Earth receives, i.e. at a temperature where liquid water could persist on rocky surfaces—also commonly referred to as sitting in the “habitable zone.” We have measured the densities for only three such planets. We know nothing about whether such planets typically host atmospheres like Earth or Venus, or any atmospheres at all. The observations required to characterize such temperate planets will take a variety of forms, all described in this section. To measure the densities of transiting planets, which distinguish between water or vapor balls, iron cores, and truly rocky planets, we will need the GMT to measure masses via the radial velocity method. To go beyond density to measure light reflected off the planets’ surfaces, we will need the GMT’s combination of sensitivity and spatial resolution. Ultimately, we want to understand the composition of planetary atmospheres, and even search for gases that would suggest whether a planet is habitable. The GMT could detect molecular oxygen, whose discovery could suggest that a planet is not only habitable, but inhabited. The Giant Magellan Telescope Science Book 2018 33 PAGE CHAPTER 2 Exoplanets & Planet Formation Measuring Masses of Earth-like Planets The G-CLEF high resolution spectrograph on the GMT will make crucial and decisive measurements of the nature of Earth-sized planets. New space missions, such as NASA’s TESS (Ricker et al. 2016), and ESA’s PLATO1, to be launched around 2024, are expected to discover dozens of Earth-sized planets in the habitable zones of nearby stars. These space missions can measure the radii of the planets they discover. However, to learn which of these planets are rocky, for example, we must measure densities, which means combining the sizes with measurements of the planets’ masses. Such density measurements provide potent insight to the structure and bulk composition of a planet, as well as information about the detectability of its atmosphere.
Recommended publications
  • THE MUSCLES TREASURY SURVEY. I. MOTIVATION and OVERVIEW* Kevin France1, R
    The Astrophysical Journal, 820:89 (24pp), 2016 April 1 doi:10.3847/0004-637X/820/2/89 © 2016. The American Astronomical Society. All rights reserved. THE MUSCLES TREASURY SURVEY. I. MOTIVATION AND OVERVIEW* Kevin France1, R. O. Parke Loyd1, Allison Youngblood1, Alexander Brown2, P. Christian Schneider3, Suzanne L. Hawley4, Cynthia S. Froning5, Jeffrey L. Linsky6, Aki Roberge7, Andrea P. Buccino8, James R. A. Davenport9,19, Juan M. Fontenla10, Lisa Kaltenegger11, Adam F. Kowalski12, Pablo J. D. Mauas8, Yamila Miguel13, Seth Redfield14, Sarah Rugheimer15, Feng Tian16, Mariela C. Vieytes17, Lucianne M. Walkowicz18, and Kolby L. Weisenburger4 1 Laboratory for Atmospheric and Space Physics, University of Colorado, 600 UCB, Boulder, CO 80309, USA; [email protected] 2 Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309, USA 3 European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 4 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA 5 Department of Astronomy, C1400, University of Texas at Austin, Austin, TX 78712, USA 6 JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309, USA 7 Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 8 Instituto de Astronomía y Física del Espacio (UBA-CONICET) and Departamento de Física (UBA), CC.67, suc. 28, 1428, Buenos Aires, Argentina 9 Department of Physics & Astronomy, Western Washington University, Bellingham,
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Habitabilidade No Sistema Solar
    Jorge Martins Teixeira HABITABILIDADE NO SISTEMA SOLAR Departamento de Física e Astronomia. Faculdade de Ciências da Universidade do Porto. Ano de 2014 Prefácio O tema da existência de vida no sistema solar é extremamente interessante. Gente de todas as idades, formações escolares e profissões se questiona se estamos sós no Universo. E gente de todos os tempos. É um assunto inesgotável. Estar em cima deste planeta e ver aquelas pintinhas lá longe tão inacessíveis é sentir que estamos perante algo que nos ultrapassa completamente. Mas que é ao mesmo tempo extremamente fascinante. Isso mesmo tive oportunidade de constatar numas férias que passei no Alentejo quando estive presente no Andanças - basicamente uma série de pavilhões onde se aprende a dançar - pois quando me encontrava altas horas da noite a indicar aos meus colegas onde se encontrava a estrela polar, a posição da Via Láctea, e outros fenómenos astronómicos fui surpreendido por um grupo de umas dez pessoas, de todas as idades, que se apercebeu do que estava a fazer e propôs a realização de uma sessão de observação de astronomia naquele recinto. De pergunta a pergunta a olhar para o céu estrelado, os minutos passaram a mais de uma hora. Isto é, a juntar à dança propriamente dita não lhes parecia mal acrescentar as danças dos corpos celestes. Seria também interessante fazer uma pesquisa nos livros de divulgação científica quais aqueles que fazem da astronomia o seu principal tema. E dar o devido valor a estas matérias que têm sido um pouco subalternizadas no ensino por outras. E ir para o espaço é o nosso futuro.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Proxima B: the Alien World Next Door - Is Anyone Home?
    Proxima b: The Alien World Next Door - Is Anyone Home? Edward Guinan Biruni Observatory Dept. Astrophysics & Planetary Science th 40 Anniversary Workshop Villanova University 12 October, 2017 [email protected] Talking Points i. Planet Hunting: Exoplanets ii. Living with a Red Dwarf Program iii. Alpha Cen ABC -nearest Star System iv. Proxima Cen – the red dwarf star v. Proxima b Nearest Exoplanet vi. Can it support Life? vii. Planned Observations / Missions Planet Hunting: Finding Exoplanets A brief summary For citizen science projects: www.planethunters.org Early Thoughts on Extrasolar Planets and Life Thousands of years ago, Greek philosophers speculated… “There are infinite worlds both like and unlike this world of ours...We must believe that in all worlds there are living creatures and planets and other things we see in this world.” Epicurius c. 300 B.C First Planet Detected 51 Pegasi – November 1995 Mayer & Queloz / Marcy & Butler Credit: Charbonneau Many Exoplanets (400+) have been detected by the Spectroscopic Doppler Motion Technique (now can measure motions as low as 1 m/s (3.6 km/h = 2.3 mph)) Exoplanet Transit Eclipses Rp/Rs ~ [Depth of Eclipse] 1/2 Transit Eclipse Depths for Jupiter, Neptune and Earth for the Sun 0.01% (Earth-Sun) 0.15% (Neptune-Sun) 1.2% (Jupiter-Sun) Kepler Mission See: kepler.nasa.gov Has so far discovered 6000+ Confirmed & Candidate Exoplanets The Search for Planets Outside Our Solar System Exoplanet Census May 2017 Exoplanet Census (May-2017) Confirmed exoplanets: 3483+ (Doppler / Transit) 490+ Multi-planet Systems [April 2017] Exoplanet Candidates: 7900+ orbiting 2600+ stars (Mostly from the Kepler Mission) [May 2017] Other unconfirmed (mostly from CoRot)Exoplanets ~186+ Potentially Habitable Exoplanets: 51 (April 2017) Estimated Planets in the Galaxy ~ 50 -100 Billion! Most expected to be hosted by red dwarf stars Nomad (Free-floating planets) ~ 25 - 50 Billion Known planets with life: 1 so far.
    [Show full text]
  • Planets Beyond the Solar System
    Understanding exoplanets in the era of large telescopes Yogesh C. Joshi Aryabhatta Research Institute of Observational Sciences (ARIES), India 1 Detection of exoplanets: Transit and Radial Velocity Method When planet passes in front of the stellar disc, it blocks light and we see a dip (loss of flux) in the light curve. 2 ΔF/F0 = (Rp/R*) When planet revolves around the star, the star wobbles and we see a variation in the radial motion. ( ⅓ 1 2G Mp sin i K = ( ⅔ 2 ½ P Ms (1 – e ) Exoplanets: present status More than 4100 exoplanets are already detected till date Planetary system close to solar system: TRAPPIST-1 4 Planetary system close to solar system: TRAPPIST-1 • TRAPPIST-1b, the innermost planet, is likely to have a rocky core, surrounded by an atmosphere much thicker than Earth's. • TRAPPIST-1c may also have a rocky interior, but with a thinner atmosphere than planet b. • TRAPPIST-1d is the lightest of the planets – about 30 percent the mass of Earth. • TRAPPIST-1e is the only planet in the system slightly denser than Earth, suggesting it may have a denser iron core than our home planet. In terms of size, density and the amount of radiation it receives from its star, this is the most similar planet to the Earth. • TRAPPIST-1f, g and h are far enough from the host star that water could be frozen as ice across their surfaces. If they have thin atmospheres, 5 they would be unlikely to contain heavy molecules of Earth, such as CO2. Exoplanetary science with large telescope High-precision photometry High-resolution spectroscopy 6 Radial Velocity through high-resolution spectroscopy HD 85512: 3.6 M⨁ transiting exoplanet Credit: ESPRESSO consortium (2018) 7 Studying the stellar rotation WASP-14b (Joshi et al.
    [Show full text]
  • 2016 Publication Year 2021-04-23T14:32:39Z Acceptance in OA@INAF Age Consistency Between Exoplanet Hosts and Field Stars Title B
    Publication Year 2016 Acceptance in OA@INAF 2021-04-23T14:32:39Z Title Age consistency between exoplanet hosts and field stars Authors Bonfanti, A.; Ortolani, S.; NASCIMBENI, VALERIO DOI 10.1051/0004-6361/201527297 Handle http://hdl.handle.net/20.500.12386/30887 Journal ASTRONOMY & ASTROPHYSICS Number 585 A&A 585, A5 (2016) Astronomy DOI: 10.1051/0004-6361/201527297 & c ESO 2015 Astrophysics Age consistency between exoplanet hosts and field stars A. Bonfanti1;2, S. Ortolani1;2, and V. Nascimbeni2 1 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy e-mail: [email protected] 2 Osservatorio Astronomico di Padova, INAF, Vicolo dell’Osservatorio 5, 35122 Padova, Italy Received 2 September 2015 / Accepted 3 November 2015 ABSTRACT Context. Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photo- metric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. Aims. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform deriva- tion of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Methods. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of 0 log RHK and v sin i, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age.
    [Show full text]
  • Anousheh Ansari
    : Fort Worth Astronomical Society (Est. 1949) August 2010 Astronomical League Member At the August Meeting: Special Guest Anousheh Ansari Club Calendar – 2 – 3 Skyportunities Star Party & Club Reports – 5 House Calls by Ophiuchus – 6 Hubble’s Amazing Rescue – 8 Your Most Important Optics -- 9 Stargazers’ Diary – 11 1 Milky Way Over Colorado by Jim Murray August 2010 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 Third Qtr Moon Challenge binary star for August: Make use of the New Viking 1 Orbiter 11:59 pm Moon Weekend for Alvan Clark 11 (ADS 11324) (Serpens Cauda) ceases operation better viewing at the 30 years ago Notable carbon star for August: Dark Sky Site Mars : Saturn O V Aquilae 1.9 Conjunction Mercury at greatest Challenge deep-sky object for August: eastern elongation Venus, Mars and Abell 53 (Aquila) Saturn all within a this evening binocular field of First in-flight New Moon view for the first 12 New Moon shuttle repair Neal Armstrong Weekend Weekend days of August. 15 years ago born 80 years ago 8 9 10 11 12 13 14 New Moon Moon at Perigee Double shadow (224,386 miles) transit on Jupiter 3RF Star Party 10:08 pm 1 pm 5:12am High in SSW Museum Star (A.T. @ 5:21 am) Party Venus : Saturn O . 3 of separation Perseid Meteor Watch Party @ 3RF New Moon Magellan enters Fairly consistent show Weekend orbit around Venus of about 60 per hour 20 years ago 15 16 17 18 19 20 21 Algol at Minima 2:45 am - In NE First Qtr Moon Total Solar 1:14 pm Eclipse in 7 years Nearest arc of totality takes in FWAS Grand Island NE St Joseph MO Meeting With Neptune @ Columbia MO Venus at greatest Opposition Anousheh Algol at Minima eastern elongation N of Nashville TN 11:34pm Low In NE 5 am N of Charleston SC Ansari this evening 22 23 24 25 26 27 28 Full Moon Moon at Apogee 2:05 pm (252,518.miles) GATE CODES Smallest of 2010 1 am to the (within 11 hrs of apogee) DARK SKY SITE will be changed st September 1 BE SURE YOU ARE CURRENT WITH DUES to Astroboy’s Day Job Venus : Mars receive new codes O 2 Conjunction 29 31 30 Anousheh Ansari’s Mission Patch at right.
    [Show full text]
  • 50 New Exoplanets Discovered by HARPS 12 September 2011
    50 new exoplanets discovered by HARPS 12 September 2011 "The harvest of discoveries from HARPS has exceeded all expectations and includes an exceptionally rich population of super-Earths and Neptune-type planets hosted by stars very similar to our Sun. And even better - the new results show that the pace of discovery is accelerating," says Mayor. In the eight years since it started surveying stars like the Sun using the radial velocity technique HARPS has been used to discover more than 150 new planets. About two thirds of all the known This artist's impression shows the planet orbiting the exoplanets with masses less than that of Neptune Sun-like star HD 85512 in the southern constellation of were discovered by HARPS. These exceptional Vela (The Sail). This planet is one of sixteen super- results are the fruit of several hundred nights of Earths discovered by the HARPS instrument on the HARPS observations. 3.6-metre telescope at ESO’s La Silla Observatory. This planet is about 3.6 times as massive as the Earth and Working with HARPS observations of 376 Sun-like lies at the edge of the habitable zone around the star, stars, astronomers have now also much improved where liquid water, and perhaps even life, could potentially exist. Credit: ESO/M. Kornmesser the estimate of how likely it is that a star like the Sun is host to low-mass planets (as opposed to gaseous giants). They find that about 40% of such stars have at least one planet less massive than Astronomers using ESO's world-leading exoplanet Saturn.
    [Show full text]
  • [Narrator] 1. Astronomers Using ESO's Leading
    ESOcast Episode 35: Fifty New Exoplanets Found by HARPS 00:00 [Visual starts] [Narrator] 1. Astronomers using ESO’s leading exoplanet hunter HARPS have today announced more than fifty New exoplanet animation... newly discovered planets around other stars. Among these are many rocky planets not much heavier than the Earth. One of them in particular orbits within the habitable zone around its star. 00:24 ESOcast intro This is the ESOcast! Cutting-edge science and life behind the scenes of ESO, the European Southern Observatory. 00:44 [Narrator] La Silla observatory 2. In this episode of the ESOcast, we take a close look at another major exoplanet discovery from Footage HARPS ESO’s La Silla Observatory, made thanks to its world-beating planet hunting machine HARPS. 01:02 Footage NTT [Narrator] 3. Among the new planets just announced by Footage HARPS scientists, sixteen are super-Earths — rocky planets up to ten times as massive as Earth. This is the Doppler video largest number of such planets ever announced at one time. A planet in orbit causes its star to regularly move backwards and forwards as seen from Earth. This creates a tiny shift of the star’s spectrum that can be measured with an extremely sensitive spectrograph such as HARPS. 01:35 Zoom (D) [Narrator] In their quest to find a rocky planet that could harbour life, astronomers are now pushing HARPS even further. They have selected ten well-studied nearby stars similar to our Sun. Earlier observations showed that these were ideal stars to examine for even less massive planets.
    [Show full text]
  • Kepler-22B: Overhyped Or Potential New Home? New 0 by Astronomyjc with
    http://chirpstory.com/dialog_embed/3351 09/12/2011 11:16 1 minute ago 0 Kepler-22b: Overhyped or potential new home? new 0 By astronomyjc with ... Like Tweet The transcript for the 18th meeting of the astronomy twitter journal club. We discussed the recent announcement of, and subsequent excitable media response to, exoplanet Kepler-22b. http://astrojournalclub.wordpress.com/2011/12/07/this-weeks-meeting-kepler-22b-hype-or-new- home/ What would you like to discuss in #astrojc this week? astronomyjc 2 days ago @astronomyjc I think we should have @Matt_Burleigh discussing Kepler 22b :-) wikimir 2 days ago @wikimir @astronomyjc love to.... If/when a paper ever appears..... Matt_Burleigh 2 days ago @Matt_Burleigh @astronomyjc Yes, good point! wikimir 2 days ago @astronomyjc Kepler-22b? antisophista 2 days ago @astronomyjc more info on kepler-22b here http://t.co/qaAzBDyD and here http://t.co/9I1pSMQW (via @astrobites) #astrojc antisophista 2 days ago Votes for Kepler22b (@antisophista & @wikimir) but there's no paper yet as @Matt_Burleigh points out How about we discuss the hype? #astrojc astronomyjc 1 day ago @astronomyjc yes, please discuss Kepler 22b hype (Topic of my astro tutorial with 3rd yr undergrads today) incl. range in planet's temp & g. Paul_Crowther 1 day ago By popular demand (i.e. 3 votes) #astrojc will discuss Kepler22b & the surrounding hype tomorrow, 20:10 GMT http://t.co/s2HhJ3t2 astronomyjc 1 day ago “@AstroPHYPapers: Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun- like Star. http://t.co/xMrNYAa9” cc @astronomyjc antisophista 1 day ago There's now a paper to go with the Kepler-22b press release http://t.co/SZZdY89R #astrojc astronomyjc 1 day ago Page 1 of 16 http://chirpstory.com/dialog_embed/3351 09/12/2011 11:16 astronomyjc 1 day ago #astrojc MT @KarenLMasters: "what scientists were quick to label a twin of Earth" http://t.co/upLAp8DL - yes it's all the scientists fault! astronomyjc 22 hours ago "Kepler 22b – hype or new home?" #astrojc discussion tonight, 20:10GMT - Please join in! I might not have..
    [Show full text]
  • The HARPS Search for Earth-Like Planets in the Habitable Zone I
    A&A 534, A58 (2011) Astronomy DOI: 10.1051/0004-6361/201117055 & c ESO 2011 Astrophysics The HARPS search for Earth-like planets in the habitable zone I. Very low-mass planets around HD 20794, HD 85512, and HD 192310, F. Pepe1,C.Lovis1, D. Ségransan1,W.Benz2, F. Bouchy3,4, X. Dumusque1, M. Mayor1,D.Queloz1, N. C. Santos5,6,andS.Udry1 1 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland e-mail: [email protected] 2 Physikalisches Institut Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis Bd Arago, 75014 Paris, France 4 Observatoire de Haute-Provence/CNRS, 04870 St. Michel l’Observatoire, France 5 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 6 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal Received 8 April 2011 / Accepted 15 August 2011 ABSTRACT Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims. The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods. Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year.
    [Show full text]