A Terrestrial Planet Candidate in a Temperate Orbit Around Proxima Centauri
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Arxiv:2107.05688V1 [Astro-Ph.GA] 12 Jul 2021
FERMILAB-PUB-21-274-AE-LDRD Draft version September 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 RR Lyrae stars in the newly discovered ultra-faint dwarf galaxy Centaurus I∗ C. E. Mart´ınez-Vazquez´ ,1 W. Cerny ,2, 3 A. K. Vivas ,1 A. Drlica-Wagner ,4, 2, 3 A. B. Pace ,5 J. D. Simon,6 R. R. Munoz,7 A. R. Walker ,1 S. Allam,4 D. L. Tucker,4 M. Adamow´ ,8 J. L. Carlin ,9 Y. Choi,10 P. S. Ferguson ,11, 12 A. P. Ji,6 N. Kuropatkin,4 T. S. Li ,6, 13, 14 D. Mart´ınez-Delgado,15 S. Mau ,16, 17 B. Mutlu-Pakdil ,2, 3 D. L. Nidever,18 A. H. Riley,11, 12 J. D. Sakowska ,19 D. J. Sand ,20 G. S. Stringfellow ,21 (DELVE Collaboration) 1Cerro Tololo Inter-American Observatory, NSF's NOIRLab, Casilla 603, La Serena, Chile 2Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 3Department of Astronomy and Astrophysics, University of Chicago, Chicago IL 60637, USA 4Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA 5McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA 6Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA 7Departamento de Astronom´ıa,Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 8Center for Astrophysical Surveys, National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA 9Rubin Observatory/AURA, 950 North Cherry Avenue, Tucson, AZ, 85719, USA 10Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 11George P. -
Prospects of Detecting the Polarimetric Signature of the Earth-Mass Planet Α Centauri B B with SPHERE/ZIMPOL
A&A 556, A64 (2013) Astronomy DOI: 10.1051/0004-6361/201321881 & c ESO 2013 Astrophysics Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL J. Milli1,2, D. Mouillet1,D.Mawet2,H.M.Schmid3, A. Bazzon3, J. H. Girard2,K.Dohlen4, and R. Roelfsema3 1 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), University Joseph Fourier, CNRS, BP 53, 38041 Grenoble, France e-mail: [email protected] 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland 4 Laboratoire d’Astrophysique de Marseille (LAM),13388 Marseille, France Received 12 May 2013 / Accepted 4 June 2013 ABSTRACT Context. Over the past five years, radial-velocity and transit techniques have revealed a new population of Earth-like planets with masses of a few Earth masses. Their very close orbit around their host star requires an exquisite inner working angle to be detected in direct imaging and sets a challenge for direct imagers that work in the visible range, such as SPHERE/ZIMPOL. Aims. Among all known exoplanets with less than 25 Earth masses we first predict the best candidate for direct imaging. Our primary objective is then to provide the best instrument setup and observing strategy for detecting such a peculiar object with ZIMPOL. As a second step, we aim at predicting its detectivity. Methods. Using exoplanet properties constrained by radial velocity measurements, polarimetric models and the diffraction propaga- tion code CAOS, we estimate the detection sensitivity of ZIMPOL for such a planet in different observing modes of the instrument. -
Curriculum Vitae - 24 March 2020
Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
1903Apj 18. .3415 the SPECTRUM of O CETL' by Joel Stebbins. On
.3415 18. 1903ApJ THE SPECTRUM OF o CETL' By Joel Stebbins. On account of the great instrumental power required for the observation of the spectra of faint objects, changes in the spectra of long-period variable stars have not been well studied. In fact, there is no star which undergoes a large variation in bright- ness whose spectrum has been systematically followed from maxi- mum to minimum, or vice versa. It is proposed to give here the results of a study of the spectrum of o Ceti> or Mira, made, at the suggestion of Director Campbell, with the thirty-six-inch refractor of the Lick Observatory, from June 1902 to January 1903. During this period the star faded in brightness from 3.8 to 9.0 magnitude. The first photograph of the spectrum was obtained about three weeks after the predicted time of maximum, and a series of plates was secured covering the interval to mini- mum. No negatives were obtained after the star had again begun to increase in brightness. The most important articles concerning the spectrum of Mira are those of Vogel,2 Sidgreaves,3 and Campbell.4 Neither Vogel nor Sidgreaves followed the star long enough to find much change in its spectrum, and Campbell’s work was mainly in con- nection with observations of the star for radial velocity, with the Mills spectrograph. INSTRUMENTS AND METHODS. The spectrograph used in my observations was the one employed rby Messrs. Campbell and Wright in their work on 1 “ Dissertation in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the University of California,” Lick Observatory Bulletin No. -
A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3]. -
Observing Exoplanets
Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. -
A New Form of Estimating Stellar Parameters Using an Optimization Approach
A&A 532, A20 (2011) Astronomy DOI: 10.1051/0004-6361/200811182 & c ESO 2011 Astrophysics Modeling nearby FGK Population I stars: A new form of estimating stellar parameters using an optimization approach J. M. Fernandes1,A.I.F.Vaz2, and L. N. Vicente3 1 CFC, Department of Mathematics and Astronomical Observatory, University of Coimbra, Portugal e-mail: [email protected] 2 Department of Production and Systems, University of Minho, Portugal e-mail: [email protected] 3 CMUC, Department of Mathematics, University of Coimbra, Portugal e-mail: [email protected] Received 17 October 2008 / Accepted 27 May 2011 ABSTRACT Context. Modeling a single star with theoretical stellar evolutionary tracks is a nontrivial problem because of a large number of unknowns compared to the number of observations. A current way of estimating stellar age and mass consists of using interpolations in grids of stellar models and/or isochrones, assuming ad hoc values for the mixing length parameter and the metal-to-helium enrichment, which is normally scaled to the solar values. Aims. We present a new method to model the FGK main-sequence of Population I stars. This method is capable of simultaneously estimating a set of stellar parameters, namely the mass, the age, the helium and metal abundances, the mixing length parameter, and the overshooting. Methods. The proposed method is based on the application of a global optimization algorithm (PSwarm) to solve an optimization problem that in turn consists of finding the values of the stellar parameters that lead to the best possible fit of the given observations. -
An Early Detection of Blue Luminescence by Neutral Pahs in the Direction of the Yellow Hypergiant HR 5171A?
A&A 583, A98 (2015) Astronomy DOI: 10.1051/0004-6361/201526392 & c ESO 2015 Astrophysics An early detection of blue luminescence by neutral PAHs in the direction of the yellow hypergiant HR 5171A? A. M. van Genderen1, H. Nieuwenhuijzen2, and A. Lobel3 1 Leiden Observatory, Leiden University, Postbus 9513, 2300RA Leiden, The Netherlands e-mail: [email protected] 2 SRON Laboratory for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 3 Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium Received 23 April 2015 / Accepted 23 August 2015 ABSTRACT Aims. We re-examined photometry (VBLUW, UBV, uvby) of the yellow hypergiant HR 5171A made a few decades ago. In that study no proper explanation could be given for the enigmatic brightness excesses in the L band (VBLUW system, λeff = 3838 Å). In the present paper, we suggest that this might have been caused by blue luminescence (BL), an emission feature of neutral polycyclic aromatic hydrocarbon molecules (PAHs), discovered in 2004. It is a fact that the highest emission peaks of the BL lie in the L band. Our goals were to investigate other possible causes, and to derive the fluxes of the emission. Methods. We used two-colour diagrams based on atmosphere models, spectral energy distributions, and different extinctions and extinction laws, depending on the location of the supposed BL source: either in Gum48d on the background or in the envelope of HR 5171A. Results. False L–excess sources, such as a hot companion, a nearby star, or some instrumental effect, could be excluded. Also, emission features from a hot chromosphere are not plausible. -
Planets Beyond the Solar System
Understanding exoplanets in the era of large telescopes Yogesh C. Joshi Aryabhatta Research Institute of Observational Sciences (ARIES), India 1 Detection of exoplanets: Transit and Radial Velocity Method When planet passes in front of the stellar disc, it blocks light and we see a dip (loss of flux) in the light curve. 2 ΔF/F0 = (Rp/R*) When planet revolves around the star, the star wobbles and we see a variation in the radial motion. ( ⅓ 1 2G Mp sin i K = ( ⅔ 2 ½ P Ms (1 – e ) Exoplanets: present status More than 4100 exoplanets are already detected till date Planetary system close to solar system: TRAPPIST-1 4 Planetary system close to solar system: TRAPPIST-1 • TRAPPIST-1b, the innermost planet, is likely to have a rocky core, surrounded by an atmosphere much thicker than Earth's. • TRAPPIST-1c may also have a rocky interior, but with a thinner atmosphere than planet b. • TRAPPIST-1d is the lightest of the planets – about 30 percent the mass of Earth. • TRAPPIST-1e is the only planet in the system slightly denser than Earth, suggesting it may have a denser iron core than our home planet. In terms of size, density and the amount of radiation it receives from its star, this is the most similar planet to the Earth. • TRAPPIST-1f, g and h are far enough from the host star that water could be frozen as ice across their surfaces. If they have thin atmospheres, 5 they would be unlikely to contain heavy molecules of Earth, such as CO2. Exoplanetary science with large telescope High-precision photometry High-resolution spectroscopy 6 Radial Velocity through high-resolution spectroscopy HD 85512: 3.6 M⨁ transiting exoplanet Credit: ESPRESSO consortium (2018) 7 Studying the stellar rotation WASP-14b (Joshi et al. -
Open Batalha-Dissertation.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science A SYNERGISTIC APPROACH TO INTERPRETING PLANETARY ATMOSPHERES A Dissertation in Astronomy and Astrophysics by Natasha E. Batalha © 2017 Natasha E. Batalha Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2017 The dissertation of Natasha E. Batalha was reviewed and approved∗ by the following: Steinn Sigurdsson Professor of Astronomy and Astrophysics Dissertation Co-Advisor, Co-Chair of Committee James Kasting Professor of Geosciences Dissertation Co-Advisor, Co-Chair of Committee Jason Wright Professor of Astronomy and Astrophysics Eric Ford Professor of Astronomy and Astrophysics Chris Forest Professor of Meteorology Avi Mandell NASA Goddard Space Flight Center, Research Scientist Special Signatory Michael Eracleous Professor of Astronomy and Astrophysics Graduate Program Chair ∗Signatures are on file in the Graduate School. ii Abstract We will soon have the technological capability to measure the atmospheric compo- sition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet’s atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets.