Proxima B: the Alien World Next Door - Is Anyone Home?

Total Page:16

File Type:pdf, Size:1020Kb

Proxima B: the Alien World Next Door - Is Anyone Home? Proxima b: The Alien World Next Door - Is Anyone Home? Edward Guinan Biruni Observatory Dept. Astrophysics & Planetary Science th 40 Anniversary Workshop Villanova University 12 October, 2017 [email protected] Talking Points i. Planet Hunting: Exoplanets ii. Living with a Red Dwarf Program iii. Alpha Cen ABC -nearest Star System iv. Proxima Cen – the red dwarf star v. Proxima b Nearest Exoplanet vi. Can it support Life? vii. Planned Observations / Missions Planet Hunting: Finding Exoplanets A brief summary For citizen science projects: www.planethunters.org Early Thoughts on Extrasolar Planets and Life Thousands of years ago, Greek philosophers speculated… “There are infinite worlds both like and unlike this world of ours...We must believe that in all worlds there are living creatures and planets and other things we see in this world.” Epicurius c. 300 B.C First Planet Detected 51 Pegasi – November 1995 Mayer & Queloz / Marcy & Butler Credit: Charbonneau Many Exoplanets (400+) have been detected by the Spectroscopic Doppler Motion Technique (now can measure motions as low as 1 m/s (3.6 km/h = 2.3 mph)) Exoplanet Transit Eclipses Rp/Rs ~ [Depth of Eclipse] 1/2 Transit Eclipse Depths for Jupiter, Neptune and Earth for the Sun 0.01% (Earth-Sun) 0.15% (Neptune-Sun) 1.2% (Jupiter-Sun) Kepler Mission See: kepler.nasa.gov Has so far discovered 6000+ Confirmed & Candidate Exoplanets The Search for Planets Outside Our Solar System Exoplanet Census May 2017 Exoplanet Census (May-2017) Confirmed exoplanets: 3483+ (Doppler / Transit) 490+ Multi-planet Systems [April 2017] Exoplanet Candidates: 7900+ orbiting 2600+ stars (Mostly from the Kepler Mission) [May 2017] Other unconfirmed (mostly from CoRot)Exoplanets ~186+ Potentially Habitable Exoplanets: 51 (April 2017) Estimated Planets in the Galaxy ~ 50 -100 Billion! Most expected to be hosted by red dwarf stars Nomad (Free-floating planets) ~ 25 - 50 Billion Known planets with life: 1 so far. http://phl.upr.edu/projects/habitable-exoplanets-catalog Habitable Zones dG Outer HZ Edge 2AU dK Outer HZ Edge dM 1AU 0.8AU Inner HZ Edge Earth-equiv Pos. Outer HZ Edge 0.5AU 0.2AU Inner HZ Edge Earth-equiv Pos. 0.3AU 1AU Earth-equiv Pos. 0.14AU Inner HZ Edge 0.1AU * Earth not drawn to scale Liquid Water Habitable Zones for mid-dM, -dK and -dG star Note that the HZs of dM-stars are located <0.3 AU from the host star. [1 AU = 150 million km] Living with a Red Dwarf www.astronomy.villanov a.edu/livingwithareddwa rf/opener.htm Program supported by grants from NASA (HST & Chandra) & NSF/RUI. The original “Living With a Red Dwarf” Program logo (not NASA approved) Physical properties of dM0-8 Stars compared to the Sun. Living with a Red Dwarf Do Red Dwarfs make “Friendly” Host Stars for Life-Bearing Planets? Photometry of stars with ages: Rotation, star spots, cycles: Age-Rotation Relations. Study effects of X-UV radiation (photoionization / photo-dissociation) on hosted planets’ water and atmospheres (volatiles). X-UV radiation & winds can erode (eliminate) planet atmospheres. As part of the Living with a Red Dwarf Program we have been collecting data on the properties of nearby stars (within 30 Ly; ~245 dM stars) that factor into their suitability as hosts of Potentially Habitable Planets. These factors include X-ray+ UV emissions, rotation / starspots, flare rates and ages. Rotation-Age-Log (Lx) Relations (Ages from Clusters, MGs, Wide Binaries, Space Motions) Proxima Cen: Prot = 83.4 +/-1.2 d (from 11-yrs of time-series Photometry. Age: 5.4+/-0.4 Gyr (age from alpha Cen A) Alpha Centauri Star System 4.3 LY (~25.4 trillion km) 1.0 LY = 5.9x1012 miles (=5.9 trillion miles) = 9,625 billion km The alpha Centauri star system – compared to the Sun (depicted to scale) Alpha Cen A & B is an eccentric 79.9-yr binary system- Spectroscopic Doppler studies indicate no Planets (upper mass limit of >2.0 Mj). Many theoretical studies indicate that planets are unlikely due to binary star tidal interactions…But … alpha Cen Bb ex-Exoplanet Earth-size planet reported in 2012 P = 3.236 d A = 0.04 AU K = 0.51+/- 0.04 m/s Min. Planet mass (Mp): 1.13 Mearth T = 1800- 2200 K (~1500 – 1900C) Dunusque et al. Nature 2012 Too Hot for LIFE even If it existed. (recent studies do not Support the existence of this planet) Proxima Centauri-The Nearest Star: --- Red Dwarf Distance= 4.25 LY; Mass = 0.123 Mo, R = 0.14 Ro; T = 3050 K; L = 0.0015 Lsun, HZ = 0.03 - 0.08 AU Anglada-Escude’ et al. (2016) report the an Earth-size HZ planet. 11.1 mag Proxima Centauri Red Dwarf Program Star since 2005 M5.5 V star) Compared to the Sun and Jupiter From our study Proxima is ~5.4+/-0.5 Gyr old and has a rotational period of 83-d & ~15% spot covered, high levels of magnetic activity: ~1 major flare/30 hrs. Proxima Centauri b Announced Aug. 25, 2016 Nature Letter doi:10.1038/nature19106 A terrestrial planet candidate in a temperate orbit around Proxima Centauri Guillem Anglada-Escude’ et al. 2016 Period Analysis of spectroscopic radial velocity observations of Proxima from Anglada-Escude’ et al. 2016. A definite period of 11.186 days is found arising from reflex motion of 1.4 m/s (~5 kph = ~3 mph) from the planet Proxima b Proxima b Keplerian fit Proxima b Period (d) 11.186 Doppler amplitude: 1.38 m/s [5 km/hr / 3 mph] Derived quantities Orbital semi-major axis, a: 0.049 AU Minimum mass, mpsini (M⊕) 1.27 (1.10–1.46) Equilibrium temperature: 234K (-39 C) With a Greenhouse effect of 50 C: T = +11 C (similar to Earths mean temperature of 15 C) Irradiance compared with Earth 65% Geometric probability of transit about 1.5% Transit depth (Earth-like density) about 0.5% [From Anglada-Escude’ et al. 2016] HZ~ 0.04-0.09 AU Sept. 2016 http: //phl.upr.edu/projects/habitable-exoplanets-catalog Loss of water from X- Comparison of the Spectral X-Near-IR UV Stellar radiation Irradiance of Proxima b and Earth (from Ribas et al. 2016) X-UV Radiation Dissociates water: Ly-alpha H2O -> 2 H + O 1216 A FUV radiation ionize H -> H+ + e- Stellar winds drag H+ ions away (if no protective geomagnetic field) via ion pick-up mechanisms. If atmosphere is lost, X-ray EUV FUV NUV UV- VIS - NIR later outgassing can lead to a CO2 rich atmosphere High-energy spectral irradiance received by Prox b and the Earth. The integrated values are calculated per unit wavelength. From Ribas et al. (2016) Proxima b X-ray EUV ~250 x 50-30 X Earth FUV 15-30 X High-energy spectral irradiance received by Prox b and the Earth. The values are calculated per unit wavelength. From Ribas et al. (2016) Effect of the intense solar wind of a young, active solar-type star on the Magnetosphere of a nearby tidally locked planet (X-UV/ Wind Flux data from Sun in Time program) To star-> Weaker Winds from an older Sun Strong Wind from young star From Griessmeier, Guinan et al. 2004, AA, 425,Griessmeier 753. et al. 2004 during From Lammer et al. 2008 , Space Sci. Rev –Atmospheric Escape and Evolution of Terrestrial Planets and Satellites Proxima b: Climate for Synchronous Rotation Possible Outcomes for Proxima b Star’s properties are well known but initial conditions of planet -such water inventories and geomagnetic fields are not constrained. As shown by Ribas et al. (2016), Prox b has endured very high radiation levels especially when the star was young. This makes outcomes uncertain. Proxima Cen b: Possible Outcomes 1. Low initial water inventories / weak geomagnetic fields: atmosphere /water Outcome: like Mercury (dry barren planet) or Mars (cold, dry /ice planet) if Water not resupplied. 2. Weak geomagnetic fields; low – moderate initial water inventory. Young M5 V star’s strong X-UV radiation & wind – produce photolysis's H2O–> 2H + O. Two outcomes: a thick (>100 Bar) O2 rich atmosphere or if all H & O lost; later outgassing of CO2 –> all (or most?) water lost -a Venus-like planet. 3. Abundant initial water (or water resupplied by comets) with a strong protective geomagnetic field: Water remains or is resupplied by comets – could result in a Water World (like Earth) or Ice world (depending on outgassing). 4. Planet forms further from the host star and migrates inward. This could avoid / diminish the higher luminosity and strong X-UV effects of the young host star. Water - Ice planet if it has sufficient water / strong geomagnetic fields Possible Evolutionary Outcomes for Proxima b Venus -Type Planet Thick CO2 Atmosphere Dense Iron Planet Beyond Proxima Cen b: Investigating the next nearest Potentially Habitable Exoplanets: Kapteyn b (13 Ly) & Wolf 1061 c (14 Ly) – Assessing their Suitability for Life Edward Guinan Scott Engle Villanova University Ignasi Ribas I.C.E. Barcelona, Spain Nearest Potentially Habitable Planets Property Earth-Sun Proxima b Kapteyn b Wolf 1061 c [1.0 AU] [0.049 AU] [0.17 AU] [0.083 AU] Mass (ME) 1.00 >1.27 >4.80 >4.25 Radius (RE) 1.00 1.1 ~1.7 ~1.6 S/SE 1.00 0.65 0.40 0.60 Teq(K) 255 [288] 227 [277] 213 [263] 223 [273] <fx> 0.67 c.g.s 163 5.4 ~30 [243 x Earth] [8.1 x Earth] [45 x Earth] <f Ly-alph> 7.0 130 12 ~50 (FUV) [18.6 x Earth] [1.7 x Earth] [7.1 x Earth] S/SE = instellation relative to Earth-Sun at 1.0 AU <f> mean irradiances [flux units: c.g.s = ergs/s/cm2] X-ray and Ly-alpha Irradiances on Earth: 0.67 and 7.1 ergs/s/cm2 TRAPPIST-1 Planetary System 39 Light years away contains 2 Earth size planets In the liquid water habitable zone.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Astrophysics Division Astrophysics Douglas Hudgins Program Scientist, Exoplanet Exploration Program Key NASA/SMD Science Themes
    National Aeronautics and Space Administration NASA and the Search for Life on Planets around Other Stars A presentation to the National Academies Committee on Exoplanet Science Strategy 6 March 2018 Paul Hertz Director, Astrophysics Division Astrophysics Douglas Hudgins Program Scientist, Exoplanet Exploration Program Key NASA/SMD Science Themes Protect and Improve Life on Earth Search for Life Elsewhere Discover the Secrets of the Universe 2 Talk summary 3 NASA’s Exoplanet Exploration Program Space Missions and Mission Studies Public Communications Kepler, WFIRST Decadal Studies K2 Starshade Coronagraph Supporting Research & Technology Key Sustaining Research NASA Exoplanet Science Institute Technology Development Coronagraph Masks Large Binocular Keck Single Aperture Telescope Interferometer Imaging and RV High-Contrast Deployable Archives, Tools, Sagan Fellowships, Imaging Starshades Professional Engagement NN-EXPLORE https://exoplanets.nasa.gov 4 Foundational Documents for the NASA’s Astrophysics Division 5 NASA’s cross-divisional Search for Life Elsewhere ASTROPHYSICS • Exoplanet detection and Planetary SCIENCE/ characterization ASTROBIOLOGY • Stellar characterization • Comparative planetology • Mission data analysis • Planetary atmospheres Hubble, Spitzer, Kepler, • Assessment of observable TESS, JWST, WFIRST, biosignatures etc. • Habitability EARTH SCIENCES • GCM • Planets as systems PLANETARY SCIENCE RESEARCH HELIOPHYSICS • Exoplanet characterization • Stellar characterization • Protoplanetary disks • Stellar winds • Planet formation • Detection of planetary • Comparative planetology magnetospheres 6 Exoplanet Exploration at NASA 2007 - present 7 The Spitzer Space Telescope For the last decade, the Spitzer Space Telescope has used both spectroscopic and photometric measurements in the mid-IR to probe exoplanets and exoplanetary systems. • Spitzer follow up observations of known transiting systems have revealed additional, new planets and helped refine measurements of the size and orbital dynamics of known planets as small as the Earth.
    [Show full text]
  • “Formas Primitivas” De Ideias Oopulares
    A FORMA DAS IDEIAS A Câmara Estenopeica Como Método de Destilação de “Formas Primitivas” de Ideias Populares (Expressões Idiomáticas) Salomé Filipa Pereira Arieira Tese de Doutoramento Directora Mª Sol Alonso Romera Facultad de Bellas Artes de Pontevedra Departamento de Dibujo Setembro 2015 Aos meus dois amores: ao meu marido Tony Oliveira e ao meu filho Gaspar, pelo amor infinito e indescritível com que recheiam os meus dias. Aos meus pais Odete e Filipe, pela coragem exemplar e pelo apoio que me transmitem sempre, desde o meu primeiro momento no mundo. À Diretora desta Tese, Sol Alonso, pela disponibilidade total que demonstrou ao longo destes anos para me guiar e acompanhar, e pela amizade e sabedoria com que desde sempre me presenteou. À Direção da Escola Artística de Soares dos Reis por todo o apoio dado ao longo destes últimos anos. Ao Miguel Paiva, à Luisa Fragoso e ao Leonardo Mira, por toda a colaboração e apoio prestados. Ao Miguel Borges (Cigano) pela disponibilidade demonstrada na cedência dos espaços que serviram de palco a várias imagens estenopeicas do projeto prático desta investigação. À Lurdes Arieira e à Claudia Tomás pelo empréstimo de alguns dos elementos fotografados (máquina de picar AGRADECIMENTOS carne e fichas de póquer). À Joana Castelo e ao David, pela gentileza que tiveram na digitalização dos negativos do projeto prático. À Sara e ao André (Blues Photography) pelo cuidado nas impressões fotográficas do projeto prático (versão impressa). À Eduarda Coelho, por me ter salvo no momento da análise sintática das Expressões Idiomáticas. À Maria Peña, cuja amizade se estende desde o início do Curso de Doutoramento, superanto barreiras físicas e temporais.
    [Show full text]
  • Exep Science Plan Appendix (SPA) (This Document)
    ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1.
    [Show full text]
  • Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
    Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process
    [Show full text]
  • Download Artist's CV
    I N M A N G A L L E R Y Michael Jones McKean b. 1976, Truk Island, Micronesia Lives and works in New York City, NY and Richmond, VA Education 2002 MFA, Alfred University, Alfred, New York 2000 BFA, Marywood University, Scranton, Pennsylvania Solo Exhibitions 2018-29 (in progress) Twelve Earths, 12 global sites, w/ Fathomers, Los Angeles, CA 2019 The Commune, SuPerDutchess, New York, New York The Raw Morphology, A + B Gallery, Brescia, Italy 2018 UNTMLY MLDS, Art Brussels, Discovery Section, 2017 The Ground, The ContemPorary, Baltimore, MD Proxima Centauri b. Gleise 667 Cc. Kepler-442b. Wolf 1061c. Kepler-1229b. Kapteyn b. Kepler-186f. GJ 273b. TRAPPIST-1e., Galerie Escougnou-Cetraro, Paris, France 2016 Rivers, Carnegie Mellon University, Pittsburgh, PA Michael Jones McKean: The Ground, The ContemPorary Museum, Baltimore, MD The Drift, Pittsburgh, PA 2015 a hundred twenty six billion acres, Inman Gallery, Houston, TX three carbon tons, (two-person w/ Jered Sprecher) Zeitgeist Gallery, Nashville, TN 2014 we float above to spit and sing, Emerson Dorsch, Miami, FL Michael Jones McKean and Gilad Efrat, Inman Gallery, at UNTITLED, Miami, FL 2013 The Religion, The Fosdick-Nelson Gallery, Alfred University, Alfred, NY Seven Sculptures, (two person show with Jackie Gendel), Horton Gallery, New York, NY Love and Resources (two person show with Timur Si-Qin), Favorite Goods, Los Angeles, CA 2012 circles become spheres, Gentili APri, Berlin, Germany Certain Principles of Light and Shapes Between Forms, Bernis Center for ContemPorary Art, Omaha, NE
    [Show full text]
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • 10/17/2015 1 the Origin of the Solar System Chapter 10
    10/17/2015 Guidepost As you explore the origins and the materials that make up the solar system, you will discover the answers to several important questions: What are the observed properties of the solar system? Chapter 10 What is the theory for the origin of the solar system that explains the observed properties? The Origin of the Solar System How did Earth and the other planets form? What do astronomers know about other extrasolar planets orbiting other stars? In this and the following six chapters, we will explore in more detail the planets and other objects that make up our solar system, our home in the universe. A Survey of the Solar System Two Kinds of Planets The solar system consists of eight Planets of our solar system can be divided into two very major planets and several other different kinds: objects. Jovian (Jupiter- like) planets: The planets rotate on their axes and Jupiter, Saturn, revolve around the Sun. Uranus, Neptune The planets have elliptical orbits, sometimes inclined to the ecliptic, and all planets revolve in the same directly; only Venus and Uranus rotate in an alternate direction. Nearly all moons also revolve in the Terrestrial (Earthlike) same direction. planets: Mercury, Venus, Earth, Mars Terrestrial Planets Craters on Planets’ Surfaces Craters (like on our Four inner moon’s surface) are planets of the common throughout solar system the solar system. Relatively small in size Not seen on Jovian and mass planets because (Earth is the Surface of Venus they don’t have a largest and Rocky surface can not be seen solid surface.
    [Show full text]
  • The Official Publication of the South African Institute Of
    THE OFFICIAL PUBLICATION OF THE SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS | OCTOBER 2017 wattnow | october 2017 | 1 Venue Emperors Palace, Ekurhuleni, South Africa Dates 28, 29 and 30 November 2017 Theme Showcasing energy storage technologies and applications as an enabling and disruptive technology. A focussed conference and exhibition covering policy, regulatory, economic, technology, business and application issues associated with Energy Storage, both as a disrupting and an enabling technology. Organised & hosted by 2 | wattnow | Foroctober further 2017 information see website: www.energystorage.co.za 17- SA Energy Storage 2017 - A4 - Wattnow.indd 1 27/09/2017 11:39:59 Venue Emperors Palace, Ekurhuleni, South Africa Dates 28, 29 and 30 November 2017 UNDERGROUND WI-FI COMMS 22 THE LAW CALLS FOR RELIABLE COMMUNICATIONS Theme Showcasing energy storage technologies and applications as an TRIPLE POLAR BAND-PASS FILTER enabling and disruptive technology. FEATURES 36 BANDWIDTH IS BEING OBSERVED FULLY UTILISING IOT IN INDUSTRY 44 COMMUNICATION IS CRUCIAL FOR THE CLOUD 20 MEMBERSHIP NOTIFICATION 47 COMMUNICATING WITH ET 48 HOW FIBRE WILL AIDE SA 56 44 48 WATTSUP 8 WATT? 60 A focussed conference and exhibition covering policy, regulatory, economic, technology, business and LOOKING BACK... OCTOBER application issues associated with Energy Storage, both as a disrupting and an enabling technology. 62 CALENDAR 65 62 Organised & hosted by www.energystorage.co.za For further information see website: SAIEE @saiee wattnow | october 2017 | 3 17- SA Energy Storage 2017 - A4 - Wattnow.indd 1 27/09/2017 11:39:59 MANAGING EDITOR Minx Avrabos | [email protected] TECHNICAL EDITORS Derek Woodburn Jane-Anne Buisson-Street Dear Reader, CONTRIBUTORS We have entered the ‘silly’ season, S Mbanjwa with year-end functions and parties P Motsoasele F Sorkh Abadi filling our diaries! It is because of A Roohavar this that I chose this issue features K Jacobs Communication.
    [Show full text]
  • Anousheh Ansari
    : Fort Worth Astronomical Society (Est. 1949) August 2010 Astronomical League Member At the August Meeting: Special Guest Anousheh Ansari Club Calendar – 2 – 3 Skyportunities Star Party & Club Reports – 5 House Calls by Ophiuchus – 6 Hubble’s Amazing Rescue – 8 Your Most Important Optics -- 9 Stargazers’ Diary – 11 1 Milky Way Over Colorado by Jim Murray August 2010 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 1 2 3 4 5 6 7 Third Qtr Moon Challenge binary star for August: Make use of the New Viking 1 Orbiter 11:59 pm Moon Weekend for Alvan Clark 11 (ADS 11324) (Serpens Cauda) ceases operation better viewing at the 30 years ago Notable carbon star for August: Dark Sky Site Mars : Saturn O V Aquilae 1.9 Conjunction Mercury at greatest Challenge deep-sky object for August: eastern elongation Venus, Mars and Abell 53 (Aquila) Saturn all within a this evening binocular field of First in-flight New Moon view for the first 12 New Moon shuttle repair Neal Armstrong Weekend Weekend days of August. 15 years ago born 80 years ago 8 9 10 11 12 13 14 New Moon Moon at Perigee Double shadow (224,386 miles) transit on Jupiter 3RF Star Party 10:08 pm 1 pm 5:12am High in SSW Museum Star (A.T. @ 5:21 am) Party Venus : Saturn O . 3 of separation Perseid Meteor Watch Party @ 3RF New Moon Magellan enters Fairly consistent show Weekend orbit around Venus of about 60 per hour 20 years ago 15 16 17 18 19 20 21 Algol at Minima 2:45 am - In NE First Qtr Moon Total Solar 1:14 pm Eclipse in 7 years Nearest arc of totality takes in FWAS Grand Island NE St Joseph MO Meeting With Neptune @ Columbia MO Venus at greatest Opposition Anousheh Algol at Minima eastern elongation N of Nashville TN 11:34pm Low In NE 5 am N of Charleston SC Ansari this evening 22 23 24 25 26 27 28 Full Moon Moon at Apogee 2:05 pm (252,518.miles) GATE CODES Smallest of 2010 1 am to the (within 11 hrs of apogee) DARK SKY SITE will be changed st September 1 BE SURE YOU ARE CURRENT WITH DUES to Astroboy’s Day Job Venus : Mars receive new codes O 2 Conjunction 29 31 30 Anousheh Ansari’s Mission Patch at right.
    [Show full text]