Wo 2007/058476 A2

Total Page:16

File Type:pdf, Size:1020Kb

Wo 2007/058476 A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 24 May 2007 (24.05.2007) PCT WO 2007/058476 A2 (51) International Patent Classification: (74) Agent: LEE, Kwang-Yeon; Lee & Kim, 5th Floor, New- AOlN 63/02 (2006.01) Seoul Bldg., 828-8, Yoksam 1-dong, Kangnam-Ku, Seoul 135-935 (KR). (21) International Application Number: PCT/KR2006/004816 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, 15 November 2006 (15.1 1.2006) CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, (25) Filing Language: Korean GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KZ, LA, LC, LK, LR, LS, LT, (26) Publication Language: English LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, (30) Priority Data: SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, 10-2005-0109352 TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW 15 November 2005 (15.1 1.2005) KR 10-2005-0109351 (84) Designated States (unless otherwise indicated, for every 15 November 2005 (15.1 1.2005) KR kind of regional protection available): ARIPO (BW, GH, 10-2005-0112626 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 23 November 2005 (23.1 1.2005) KR ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (71) Applicant (for all designated States except US): LG European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ELECTRONICS, INC. [KR/KR]; 20, Yoido-dong, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV,MC, NL, PL, PT, Yongdungpo-ku, Seoul 150-010 (KR). RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). (72) Inventors; and (75) Inventors/Applicants (for US only): LEE, Sung-Hwan Published: [KR/KR]; 102-1303, Woosung Apt., Namyang-dong, — without international search report and to be republished Changwon-si, Gyungsangnam-do 641-091 (KR). HYUN, upon receipt of that report Ok-Chun [KR/KR]; 108-402, Guduk Daerim Apt., Hakjang-dong, Sasang-gu, Busan 617-774 (KR). PARK, For two-letter codes and other abbreviations, refer to the "G uid Hyung-Ho [KR/KR]; 308-1004, Chungsol Apt. 42/4, 8/2, ance Notes on Codes and Abbreviations" appearing at the beg in Songgang-dong, Yuseong-ku, Daejeon 305-503 (KR). ning of each regular issue of the PCT Gazette. (54) Title: ARTICLES WITH ANTIMICROBIAL PROPERTY AND MANUFACTURING METHOD THEREOF (57) Abstract: The present invention discloses an article with an antimicrobial property, and a manufacturing method thereof which gives the antimicrobial property to a surface of an article which bacteria or viruses may contact to proliferate themselves, by using the Kimchi lactic acid bacteria culture fluid with antibacterial and antivirus effects. The article needing the antimicrobial effect is provided with the antimicrobial property, by using the Kimchi lactic add bacteria culture fluid with a wide antibacterial spectrum singly or in combination with nano metal particles. Description ARTICLES WITH ANTIMICROBIAL PROPERTY AND MANUFACTURING METHOD THEREOF Technical Field [1] The present invention relates to an article with an antimicrobial property and a man ufacturing method thereof, and more particularly, to an article with an antimicrobial property, and a manufacturing method thereof which gives the antimicrobial property to a surface of an article which bacteria or viruses may contact to proliferate themselves, by using the Kimchi lactic acid bacteria culture fluid with antibacterial and antivirus effects. Background Art [2] Recently, with the increasing interest in the hygiene and cleanliness, a number of products have been developed to improve the hygiene and cleanliness. The electronic product field is not an exception. In detail, electric home appliances needing the hygiene and cleanliness include a refrigerator, washing machine, drying machine, air oonditioner, air freshener, fan, cleaner, electric pot, electric cooker, dishwashing machine, dish drying machine, microwave oven, mixer, VTR, television, home theater, etc.. [3] Bacteria or fungi which can be parasitic on the surfaces of the products or the surfaces of the components thereof cause diseases such as atopic dermatitis, respiratory trouble, etc., disfigure the products, generate a bad smell, and discolor the external ap pearances of the.products. It is thus necessary to manufacture an antimicrobial article for protecting the users from the diseases and keeping the external appearances of the products, by preventing the oontact and proliferation of various bacteria and fungi. [4] Generally, most of antibacterial agents for manufacturing an antibacterial article are chemically synthesized, to require the high cost and cause harmful side effects. Recently, researches have been actively made on a natural antibacterial material which has an excellent antibacterial property and no side effects harmful for a human body. [5] Kimchi lactic acid bacteria are generated in fermentation and mature of Kimchi. Safety of the Kimchi lactic acid bacteria as the natural source has been verified by the long time use. It is easy to acquire the Kimchi lactic acid bacteria at a low cost. In addition, the Kimchi lactic acid bacteria have been known as a natural antibacterial material with an excellent antibacterial property and a wide antibacterial spectrum. Moreover, there has been reported that the Kimchi lactic acid bacteria culture fluid oould inhibit activities of avian influenza viruses and other viruses with the similar mechanism to that of avian influenza viruses. [6] Accordingly, the present inventors have accomplished this invention by giving the antimicrobial property to a surface of an article, paying attention to the antibacterial and antivirus effects of the Kimchi lactic acid bacteria culture fluid. Disclosure of Invention Technical Problem [7] An object of the present invention is to provide an article with an antimicrobial property coated with the Kimchi lactic acid bacteria culture fluid having antibacterial and antivirus effects. [8] Another object of the present invention is to provide a manufacturing method of an article having an antimicrobial property which coats the Kimchi lactic add bacteria culture fluid with antibacterial and antivirus effects on the surface of the article. Technical Solution [9] In order to achieve the above-described objects of the invention, there is provided an article with an antimicrobial property, which is coated with the Kimchi lactic acid bacteria culture fluid, or both the Kinxhi lactic acid bacteria culture fluid and nano metal particles. [10] There is also provided a manufacturing method of an article with an antimicrobial property, including a step for coating the Kimchi lactic acid bacteria culture fluid or both the Kinxhi lactic acid bacteria culture fluid and nano metal particles on the surface of the article. Mode for the Invention [11] The present invention will now be described in detail. [12] The present invention provides the article with the antimicrobial property coated with the Kimchi lactic add bacteria culture fluid or both the Kinxhi lactic add bacteria culture fluid and nano metal particles. [13] Here, the antimicrobial property includes an antibacterial property, an antifungal property and an antivirus property. [14] The article means all kinds of articles which bacteria, viruses, etc. may contact to proliferate themselves without spedal restrictions in use of the article. Therefore, the article can be unlimitedly manufactured according to a method publicly known in this field, for example, injection molding, extrusion molding, blow molding and thermal molding. [15] In accordance with one aspect of the present invention, the article can be one of electric home appliances. The electric home appliances mean the whole electric home appliances or the internal or external parts thereof. Exemplary electric home appliances include a refrigerator, washing machine, drying machine, air conditioner, air freshener, fan, cleaner, electric pot, electric cooker, dishwashing machine, dish drying machine, water purifier, microwave oven, mixer, VTR, television and home theater. The parts of the electric home appliances are varied according to the kinds of the electric home appliances. Ibr example, the parts of the washing machine are an inner tub, an outer tiib, a detergent box, a drum lift, a water supply/drain passage, a filter, etc., the parts of the refrigerator are an inner Outer wall, a cool air duct, a ventilation fan, a door handle, a vegetable box, an ice maker, a filter, etc., and the parts of the air conditioner are an electric heat exchanger, a ventilation fan, an air passage, a filter, etc. Any kinds of raw materials which can form the whole electric home appliance or the forming member thereof can be used without special restrictions. Ibr example, thermoplastic resin, ther mosetting resin, rubber and metal can be used as the raw materials. The raw materials can be used in various ways according to their characteristics. [16] In accordance with another aspect of the present invention, the article can be a filter. Any article performing the filtering function can be used without special re strictions in use, kind and type. Exemplary articles include an air filter, a water filter ari d a cleaner filter. Any kinds of materials having the filtering function can be used as a material of the filter without special restrictions in kind, type, size and manufacturing process. Exemplary materials. include a glass fiber, an ion exchange fiber, a cellulose fiber and an asbestos fiber, various organic and inorganic fibers, a metal such as zinc, copper and aluminum, and a plastic.
Recommended publications
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Fermented Foods
    Chapter 6 Fermented Foods Fermentation in food processing is the process of converting carbohydrate to alcohol or organic acids using microorganisms, yeasts or bacteria-under anaerobic conditions. Fermented foods are rich in probiotic bacteria so by consuming fermented foods the health of gut microbiome and digestive system can increase and also can enhances the immune system. Sauerkraut Sauerkraut is a finely cut raw cabbage that has been fermented by lactic acid bacteria. It is made by a process of pickling called lactic acid fermentation. The cabbage is finely shredded, layered with salt and left to ferment. Fully cured sauerkraut keeps for several months in an airtight container stored at 150C or below. The fermentation process involves three phases. In the first phase, anaerobic bacteria such as Klebsiella and Enterobacter lead the fermentation and beginning to produce an acidic environment that favors later bacteria. The second phase starks as the acid levels becomes too high for many bacteria and Leuconostoc mesenteroides and other Leuconostoc spp. take dominance. In the third phase, various Lactobacillus species including L. brevis and L. plantarum ferment any remaining sugars, further lowering the pH. Properly cured sauerkraut is sufficiently acidic to prevent a favorable environment for the growth of Clostridium botulinum, the toxins of which cause botulism. Tempeh Tempeh is a traditional Indonesian Soy product made from fermented Soybeans. The principal step in making tempeh is the fermentation of soybeans which undergo inoculation with Rhizopus spp. mold Rhizopus oligosporus. The beans are spread into a thin layer and are allowed to ferment for 24-36 hours at a temperature around 300C.
    [Show full text]
  • A Genome-Based Species Taxonomy of the Lactobacillus Genus Complex
    A genome-based species taxonomy of the Lactobacillus genus complex Item Type Article Authors Wittouck, S.; Wuyts, S.; Meehan, Conor J.; van Noort, V.; Lebeer, S. Citation Wittouck S, Wuyts S, Meehan CJ et al (2019) A genome-based species taxonomy of the Lactobacillus genus complex. mSystems. 4(5): e00264-19. Rights © 2019 Wittouck et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Download date 03/10/2021 20:20:26 Link to Item http://hdl.handle.net/10454/17513 RESEARCH ARTICLE Ecological and Evolutionary Science A Genome-Based Species Taxonomy of the Lactobacillus Genus Complex Stijn Wittouck,a,b Sander Wuyts,a Conor J. Meehan,c,d Vera van Noort,b Sarah Lebeera Downloaded from aResearch Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium bCentre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium cSchool of Chemistry and Bioscience, University of Bradford, Bradford, United Kingdom dBCCM/ITM Mycobacterial Culture Collection, Institute of Tropical Medicine, Antwerp, Belgium ABSTRACT There are more than 200 published species within the Lactobacillus ge- nus complex (LGC), the majority of which have sequenced type strain genomes http://msystems.asm.org/ available. Although genome-based species delimitation cutoffs are accepted as the gold standard by the community, these are seldom actually checked for new or al- ready published species. In addition, the availability of genome data is revealing in- consistencies in the species-level classification of many strains. We constructed a de novo species taxonomy for the LGC based on 2,459 publicly available genomes, us- ing a 94% core nucleotide identity cutoff.
    [Show full text]
  • A Genome-Based Species Taxonomy of the Lactobacillus Genus Complex
    RESEARCH ARTICLE Ecological and Evolutionary Science Downloaded from A Genome-Based Species Taxonomy of the Lactobacillus Genus Complex Stijn Wittouck,a,b Sander Wuyts,a Conor J. Meehan,c,d Vera van Noort,b Sarah Lebeera aResearch Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium bCentre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium http://msystems.asm.org/ cSchool of Chemistry and Bioscience, University of Bradford, Bradford, United Kingdom dBCCM/ITM Mycobacterial Culture Collection, Institute of Tropical Medicine, Antwerp, Belgium ABSTRACT There are more than 200 published species within the Lactobacillus ge- nus complex (LGC), the majority of which have sequenced type strain genomes available. Although genome-based species delimitation cutoffs are accepted as the gold standard by the community, these are seldom actually checked for new or al- ready published species. In addition, the availability of genome data is revealing in- consistencies in the species-level classification of many strains. We constructed a de novo species taxonomy for the LGC based on 2,459 publicly available genomes, us- ing a 94% core nucleotide identity cutoff. We reconciled these de novo species with on January 24, 2020 at University of Antwerp - Library published species and subspecies names by (i) identifying genomes of type strains and (ii) comparing 16S rRNA genes of the genomes with 16S rRNA genes of type strains. We found that genomes within the LGC could be divided into 239 de novo species that were discontinuous and exclusive. Comparison of these de novo species to published species led to the identification of nine sets of published species that can be merged and one species that can be split.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    TAXONOMIC DESCRIPTION Zheng et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.004107 A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Jinshui Zheng1†, Stijn Wittouck2†, Elisa Salvetti3†, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9,10, Koichi Watanabe11,12, Sander Wuyts2, Giovanna E. Felis3,*,†, Michael G. Gänzle9,13,*,† and Sarah Lebeer2† Abstract The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and gen- otypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade- specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host- adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacil- lus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa,
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,196,417 B2 Kim Et Al
    USOO8196417B2 (12) United States Patent (10) Patent No.: US 8,196,417 B2 Kim et al. (45) Date of Patent: Jun. 12, 2012 (54) REFRIGERATOR (52) U.S. Cl. .............................................. 62/78; 62/515 (58) Field of Classification Search ................ 62/26,78, (75) Inventors: Dong-Kyu Kim, Pohang-si (KR): 62/449, 515; 426/43, 38, 57, 61,234, 305; Kyung-Dae Hwang, Changwon-si (KR): 38/26, 78,449, 515 Jin-Hyun Kim, Incheon-si (KR); See application file for complete search history. Hyuk-Soon Kim, Seoul (KR): Seung-Beom Chae, Gangneung-si (KR); (56) References Cited Hyun-Tae Lee, Changwon-si (KR): Joo-Shin Kim, Changwon-si (KR) U.S. PATENT DOCUMENTS 2,765,046 A 10, 1956 Rondholz (73) Assignee: LG Electronics Inc., Seoul (KR) 4.942,032 A 7/1990 Vandenbergh et al. 5, 186,962 A 2f1993 Hutkins et al. (*) Notice: Subject to any disclaimer, the term of this 5,392,615 A * 2/1995 Lim ................................ 62/414 patent is extended or adjusted under 35 U.S.C. 154(b) by 881 days. (Continued) FOREIGN PATENT DOCUMENTS (21) Appl. No.: 12/094,760 DE 202 14 601 U1 1, 2003 (22) PCT Filed: Nov. 23, 2006 (Continued) (86). PCT No.: OTHER PUBLICATIONS S371 (c)(1), Translation of JP 10-132447 to Sumidaetal of an Ids enclosed by the (2), (4) Date: Oct. 14, 2008 Applicants. (87) PCT Pub. No.: WO2007/061238 Primary Examiner — Mohammad Ali (74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch & PCT Pub. Date: May 31, 2007 Birch, LLP (65) Prior Publication Data (57) ABSTRACT US 2009/0217694 A1 Sep.
    [Show full text]
  • A Genome-Based Species Taxonomy of the Lactobacillus Genus Complex
    bioRxiv preprint doi: https://doi.org/10.1101/537084; this version posted January 31, 2019. The copyright holder for this preprint (which 1/31/2019was not certified by peer review) is the author/funder,paper who lgc has species granted taxonomy bioRxiv a license - Google to display Documenten the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A genome-based species taxonomy of the Lactobacillus Genus Complex Stijn Wittouck1,2 , Sander Wuyts 1, Conor J Meehan3,4 , Vera van Noort2 , Sarah Lebeer1,* 1Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium 2Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium 3Unit of Mycobacteriology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium 4BCCM/ITM Mycobacterial Culture Collection, Institute of Tropical Medicine, Antwerp, Belgium *Corresponding author; [email protected] Abstract Background: There are over 200 published species within the Lactobacillus Genus Complex (LGC), the majority of which have sequenced type strain genomes available. Although gold standard, genome-based species delimitation cutoffs are accepted by the community, they are seldom checked against currently available genome data. In addition, there are many species-level misclassification issues within the LGC. We constructed a de novo species taxonomy for the LGC based on 2,459 publicly available, decent-quality genomes and using a 94% core nucleotide identity threshold. We reconciled thesede novo species with published species and subspecies names by (i) identifying genomes of type strains in our dataset and (ii) performing comparisons based on 16S rRNA sequence identity against type strains.
    [Show full text]
  • Hcm 431 Advanced Food and Beverage Production
    COURSE GUIDE HCM 431 ADVANCED FOOD AND BEVERAGE PRODUCTION Course Team Dr. I.A. Akeredolu (Course Developer /Writer)- Yaba College of Technology, Lagos Dr. J.C.Okafor (Course Editor) - The Federal Polytechnic, Ilaro Dr. (Mrs.) A. O. Fagbemi (Programme Leader) - NOUN Mr. S. O. Israel-Cookey (Course Coordinator) - NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA HCM 431 COURSE GUIDE National Open University of Nigeria Headquarters University Village Plot 91, Cadastral Zone, Nnamdi Azikiwe Express way Jabi, Abuja Lagos Office 14/16 Ahmadu Bello Way Victoria Island, Lagos e-mail: [email protected] website: www.nouedu.net Published by National Open University of Nigeria Printed 2013 Reprinted 2015 ISBN: 978-058-926-0 All Rights Reserved i i HCM 431 COURSE GUIDE CONTENTS PAGE Introduction .......................................................................... iv Course Aims ...................................................................... iv Course Objectives ................................................................. iv Working through this Course ................................................ iv Course Materials ................................................................... v Study Units ........................................................................... v Assessment ........................................................................ vi Tutor – Marked Assessment (TMA) ....................................... vi Final Examination and Grading .............................................. vi Getting the Best from
    [Show full text]
  • Taxonomy of Lactobacilli and Bifidobacteria
    Curr. Issues Intestinal Microbiol. 8: 44–61. Online journal at www.ciim.net Taxonomy of Lactobacilli and Bifdobacteria Giovanna E. Felis and Franco Dellaglio*† of carbohydrates. The genus Bifdobacterium, even Dipartimento Scientifco e Tecnologico, Facoltà di Scienze if traditionally listed among LAB, is only poorly MM. FF. NN., Università degli Studi di Verona, Strada le phylogenetically related to genuine LAB and its species Grazie 15, 37134 Verona, Italy use a metabolic pathway for the degradation of hexoses different from those described for ‘genuine’ LAB. Abstract The interest in what lactobacilli and bifdobacteria are Genera Lactobacillus and Bifdobacterium include a able to do must consider the investigation of who they large number of species and strains exhibiting important are. properties in an applied context, especially in the area of Before reviewing the taxonomy of those two food and probiotics. An updated list of species belonging genera, some basic terms and concepts and preliminary to those two genera, their phylogenetic relationships and considerations concerning bacterial systematics need to other relevant taxonomic information are reviewed in this be introduced: they are required for readers who are not paper. familiar with taxonomy to gain a deep understanding of The conventional nature of taxonomy is explained the diffculties in obtaining a clear taxonomic scheme for and some basic concepts and terms will be presented for the bacteria under analysis. readers not familiar with this important and fast-evolving area,
    [Show full text]
  • Staff Assessment Report
    Staff Assessment Report APP203045: To determine the new organism status of Lactobacillus sanfranciscensis, Lactobacillus rossiae, Lactobacillus crustorum, Lactobacillus curvatus, Lactobacillus pontis, Lactobacillus hilgardii, Lactobacillus paralimentarius, Leuconostoc lactis, Pediococcus parvulus and Pediococcus acidilactici 19 April 2017 Purpose To determine if Lactobacillus sanfranciscensis, Lactobacillus rossiae, Lactobacillus crustorum, Lactobacillus curvatus, Lactobacillus pontis, Lactobacillus hilgardii, Lactobacillus paralimentarius, Leuconostoc lactis, Pediococcus parvulus and Pediococcus acidilactici are new organisms under Section 26 of the HSNO Act Application number APP203045 Application type Statutory Determination Applicant The New Zealand Institute for Plant & Food Research Date formally received 22 November 2016 EPA Staff Assessment Report: Application APP203045 Executive Summary and Recommendation The New Zealand Institute for Plant & Food Research has submitted an application in order to seek a determination on the new organism status of Lactobacillus sanfranciscensis, L. rossiae, L. crustorum, L. curvatus, L. pontis, L. hilgardii, L. paralimentarius, Leuconostoc lactis, Pediococcus parvulus and P. acidilactici. After reviewing the information provided by the applicant, we recommend that the Hazardous Substances and New Organisms (HSNO) Decision-making Committee determines that Lactobacillus sanfranciscensis, L. rossiae, L. crustorum, L. curvatus, L. pontis, L. hilgardii, L. paralimentarius, Leuconostoc lactis, Pediococcus
    [Show full text]
  • Chapter 4: Plant-Based Fermented Foods and Beverages of Asia
    4 Plant-Based Fermented Foods and Beverages of Asia Jyoti Prakash Tamang CONTENTS 4.1 Introduction .....................................................................................................................................51 4.2 Fermented Vegetables .................................................................................................................... 57 4.2.1 Gundruk ............................................................................................................................. 57 4.2.2 Kimchi ............................................................................................................................... 57 4.2.3 Sinki ................................................................................................................................... 58 4.2.4 Sunki .................................................................................................................................. 58 4.2.5 Khalpi ................................................................................................................................ 58 4.2.6 Goyang ............................................................................................................................... 58 4.2.7 Pao Cai and Suan Cai ........................................................................................................ 58 4.2.8 Fu-tsai and Suan-tsai ......................................................................................................... 59 4.2.9 Jeruk .................................................................................................................................
    [Show full text]
  • I. Introduction Maintenance
    한국식생활문화학회지 34(2): 208-216, 2019 ISSN 1225-7060(Print) J. Korean Soc. Food Cult. 34(2): 208-216, 2019 ISSN 2288-7148(Online) 본 논문의 저작권은 한국식생활문화학회에 있음 . https://doi.org/10.7318/KJFC/2019.34.2.208 Copyright © The Korean Society of Food Culture Strain-specific Detection of Kimchi Starter Leuconostoc mesenteroides WiKim33 using Multiplex PCR Moeun Lee, Jung Hee Song, Ji Min Park, Ji Yoon Chang* Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi Abstract Leuconostoc spp. are generally utilized as kimchi starters, because these strains are expected to have beneficial effects on kimchi fermentation, including improvement of sensory characteristics. Here, we developed a detection method for verifying the presence of the kimchi starter Leuconostoc mesenteroides WiKim33, which is used for control of kimchi fermentation. A primer set for multiplex polymerase chain reaction was designed based on the nucleotide sequence of the plasmids in strain WiKim33, and their specificity was validated against 45 different strains of Leuconostoc spp. and 30 other strains. Furthermore, the starter strain consistently tested positive, regardless of the presence of other bacterial species in starter kimchi during the fermentation period. Our findings showed that application of a strain-specific primer set for strain WiKim33 presented a rapid, sensitive, and specific method for detection of this kimchi starter strain during natural kimchi fermentation. Key Words: Leuconostoc mesenteroides WiKim33, strain-specific primers, kimchi starter, multiplex polymerase chain reaction I. Introduction maintenance. The majority of bacteria in kimchi can be cultured (Kim and Chun 2005); therefore, agar-plate Kimchi is fermented by lactic acid bacteria (LAB) at low culturing is typically used as a culture-dependent method for temperatures, ensuring proper ripening and preservation.
    [Show full text]