Taxonomy of Lactobacilli and Bifidobacteria

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy of Lactobacilli and Bifidobacteria Curr. Issues Intestinal Microbiol. 8: 44–61. Online journal at www.ciim.net Taxonomy of Lactobacilli and Bifdobacteria Giovanna E. Felis and Franco Dellaglio*† of carbohydrates. The genus Bifdobacterium, even Dipartimento Scientifco e Tecnologico, Facoltà di Scienze if traditionally listed among LAB, is only poorly MM. FF. NN., Università degli Studi di Verona, Strada le phylogenetically related to genuine LAB and its species Grazie 15, 37134 Verona, Italy use a metabolic pathway for the degradation of hexoses different from those described for ‘genuine’ LAB. Abstract The interest in what lactobacilli and bifdobacteria are Genera Lactobacillus and Bifdobacterium include a able to do must consider the investigation of who they large number of species and strains exhibiting important are. properties in an applied context, especially in the area of Before reviewing the taxonomy of those two food and probiotics. An updated list of species belonging genera, some basic terms and concepts and preliminary to those two genera, their phylogenetic relationships and considerations concerning bacterial systematics need to other relevant taxonomic information are reviewed in this be introduced: they are required for readers who are not paper. familiar with taxonomy to gain a deep understanding of The conventional nature of taxonomy is explained the diffculties in obtaining a clear taxonomic scheme for and some basic concepts and terms will be presented for the bacteria under analysis. readers not familiar with this important and fast-evolving area, which importance is often underestimated. The Basic terms and concepts in bacterial taxonomy analysis of biodiversity and its cataloguing, i.e. taxonomy, Taxonomy or systematics may be defned as the process constitute the basis for applications and scientifc of cataloguing biodiversity, as it is the scientifc study communication: reliable identifcation and correct naming of the diversity of organisms with the ultimate goal of of bacterial strains are not only primary aims of taxonomic characterizing and arranging them in an orderly manner studies, but also fundamental elements in an applied (Schleifer and Ludwig, 1994). context, for the tracking of probiotic strains and a non Classifcation, identifcation and nomenclature are fraudulent labelling of fermented milks and pharmaceutical the three separate but related subdisciplines of taxonomy. products containing probiotic microorganisms. A number Classifcation is the process of clustering organisms into of resources freely available have been listed and their taxonomic groups (taxa) on the basis of similarities or use is suggested for people concerned with different relationships. Nomenclature is the assignment of names aspects of taxonomy. to the taxonomic groups according to international rules. Some perspectives in taxonomy have been outlined, Finally, identifcation is the process of determining the in particular considering the role of culture independent belonging of a new isolate to one of the established and analyses to reveal the still unknown and uncultured named taxa (Staley and Krieg, 1989). microorganisms. Finally, the impact of the availability Bacterial taxonomy is an area of growing interest: of whole-genome sequences in taxonomy is briefy it has implications for many basic scientifc and applied explained: they have already begun to give insights on felds and therefore, in some way, it underpins all bacterial evolution, which will surely have implications biological research (Tautz et al., 2003). It is considered on taxonomy, even if the analysis of data for lactic acid to have a ‘philosophical’ root, derived from human desire bacteria is still limited to few species. to recognize and understand the world, which requires a logical ordering of items (Rosselló-Mora, 2005). Moreover Introduction it has a strong practical motivation (Kandler, 1984): Species of the genera Lactobacillus and Bifdobacterium classifcation schemes, if reliable, could be predictive are some of the most important taxa involved in food and allow quick characterization of new isolates based microbiology and human nutrition, due to their role in on similarity with known taxa; identifcation procedures food and feed production and preservation, and also to allow confrmation of the identity of strains used, for the probiotic properties exhibited by some strains. These instance, in patented industrial processes; fnally, correct traits are of increasing importance and receive attention nomenclature allows not only scientifc communication from the consumer and market. but also unequivocal labelling of products containing The genus Lactobacillus belongs to the Lactic Acid microorganisms, providing customer and producer Bacteria (LAB), a defnition which groups Gram-positive, satisfaction. catalase-negative bacterial species able to produce Taxa in the classifcation system are arranged in a lactic acid as main end-product of the fermentation hierarchical way. At present, two prokaryotic domains are recognized: Archaea and Bacteria. Domains are divided into phyla and the levels below the phylum are classes, *For correspondence: [email protected] orders (or subdivisions, depending on the group), families, †Present address: NIZO food research, Kluyver Centre genera and species. Different taxonomic levels are for Genomics of Industrial Fermentation, PO Box 20, characterized by different suffxes in the taxon names. 6710 BA Ede, The Netherlands. © Horizon Scientifc Press. Offprints from www.ciim.net Further Reading Caister Academic Press is a leading academic publisher of advanced texts in microbiology, molecular biology and medical research. Full details of all our publications at caister.com • MALDI-TOF Mass Spectrometry in Microbiology Edited by: M Kostrzewa, S Schubert (2016) www.caister.com/malditof • Aspergillus and Penicillium in the Post-genomic Era Edited by: RP Vries, IB Gelber, MR Andersen (2016) www.caister.com/aspergillus2 • The Bacteriocins: Current Knowledge and Future Prospects Edited by: RL Dorit, SM Roy, MA Riley (2016) www.caister.com/bacteriocins • Omics in Plant Disease Resistance Edited by: V Bhadauria (2016) www.caister.com/opdr • Acidophiles: Life in Extremely Acidic Environments Edited by: R Quatrini, DB Johnson (2016) www.caister.com/acidophiles • Climate Change and Microbial Ecology: Current Research and Future Trends Edited by: J Marxsen (2016) www.caister.com/climate • Biofilms in Bioremediation: Current Research and Emerging Technologies • Flow Cytometry in Microbiology: Technology and Applications Edited by: G Lear (2016) www.caister.com/biorem Edited by: MG Wilkinson (2015) www.caister.com/flow • Microalgae: Current Research and Applications • Probiotics and Prebiotics: Current Research and Future Trends Edited by: MN Tsaloglou (2016) www.caister.com/microalgae Edited by: K Venema, AP Carmo (2015) www.caister.com/probiotics • Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives • Epigenetics: Current Research and Emerging Trends Edited by: H Shintani, A Sakudo (2016) Edited by: BP Chadwick (2015) www.caister.com/gasplasma www.caister.com/epigenetics2015 • Virus Evolution: Current Research and Future Directions • Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications Edited by: SC Weaver, M Denison, M Roossinck, et al. (2016) www.caister.com/virusevol Edited by: A Burkovski (2015) www.caister.com/cory2 • Arboviruses: Molecular Biology, Evolution and Control Edited by: N Vasilakis, DJ Gubler (2016) • Advanced Vaccine Research Methods for the Decade of www.caister.com/arbo Vaccines Edited by: F Bagnoli, R Rappuoli (2015) • Shigella: Molecular and Cellular Biology www.caister.com/vaccines Edited by: WD Picking, WL Picking (2016) www.caister.com/shigella • Antifungals: From Genomics to Resistance and the Development of Novel Agents • Aquatic Biofilms: Ecology, Water Quality and Wastewater Edited by: AT Coste, P Vandeputte (2015) Treatment www.caister.com/antifungals Edited by: AM Romaní, H Guasch, MD Balaguer (2016) www.caister.com/aquaticbiofilms • Bacteria-Plant Interactions: Advanced Research and Future Trends Edited by: J Murillo, BA Vinatzer, RW Jackson, et al. (2015) • Alphaviruses: Current Biology www.caister.com/bacteria-plant Edited by: S Mahalingam, L Herrero, B Herring (2016) www.caister.com/alpha • Aeromonas Edited by: J Graf (2015) • Thermophilic Microorganisms www.caister.com/aeromonas Edited by: F Li (2015) www.caister.com/thermophile • Antibiotics: Current Innovations and Future Trends Edited by: S Sánchez, AL Demain (2015) www.caister.com/antibiotics • Leishmania: Current Biology and Control Edited by: S Adak, R Datta (2015) www.caister.com/leish2 • Acanthamoeba: Biology and Pathogenesis (2nd edition) Author: NA Khan (2015) www.caister.com/acanthamoeba2 • Microarrays: Current Technology, Innovations and Applications Edited by: Z He (2014) www.caister.com/microarrays2 • Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications Edited by: D Marco (2014) www.caister.com/n2 Order from caister.com/order Taxonomy of Lactobacilli and Bifdobacteria 45 As microorganisms have too simple a structure and performed and properties attributed, they are, frst of all, too few informative characters compared with higher characteristics of the strain under study. organisms (e.g. morphology), progress in bacterial The phylogenetic approach has revolutionized taxonomy has always been dependent on advances in bacterial systematics. Relatedness among organisms
Recommended publications
  • The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
    microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression.
    [Show full text]
  • Ing to Unpublished Data of Douglas and Vaughn.) Arena (1936)
    THE pH REQUIREMENTS OF SOME HETEROFERMEN- TATIVE SPECIES OF LACTOBACILLUS JOHN C. M. FORNACHON,1 HOWARD C. DOUGLAS AND REESE H. VAUGHN Division of Fruit Products, University of California, Berkeley, California Received for publication May 6, 1940 I. INTRODUCTION The lactobacilli are noted for their ability to grow in acid media. Although media with reactions between pH 3.5 and 5.0 have been recommended for their isolation, the media used in physiological studies by Pederson (1929, 1938), Nelson and Werkman (1935, 1936), Weinstein and Rettger (1932) and others had values ranging from pH 6.2 to 7.0. Shimwell (1935) found the optimum pH for the growth of LactobaciUus pastorianus to be approximately 8.0. It has been observed however that species of Lactobacillus isolated from wines and other similar products thrive best when the medium is appreciably acid. Otani (1936) pointed out that homofermen- tative lactobacilli isolated from sake grew most vigorously be- tween pH 4.0 and 5.0 Fornachon (1936) found the optimum pH for the growth of a heterofermentative species of Lactobacillus isolated from Australian wine to be between pH 4.0 and 5.0. Douglas and McClung (1937) reported a bacterium from Califor- nia wine with an optimum pH between 4.1 and 4.3. (This organism is a heterofermentative species of LactobaciUus accord- ing to unpublished data of Douglas and Vaughn.) Arena (1936) described several lactic acid bacteria isolated from Argentinian wine and found the optimum pH for growth to vary between pH 4.3 and 6.7. 1 Research Officer, Australian Wine Board, Waite Agricultural Research In- stitute, University of Adelaide, South Australia.
    [Show full text]
  • Food Or Beverage Product, Or Probiotic Composition, Comprising Lactobacillus Johnsonii 456
    (19) TZZ¥¥¥ _T (11) EP 3 536 328 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 11.09.2019 Bulletin 2019/37 A61K 35/74 (2015.01) A61K 35/66 (2015.01) A61P 35/00 (2006.01) (21) Application number: 19165418.5 (22) Date of filing: 19.02.2014 (84) Designated Contracting States: • SCHIESTL, Robert, H. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Encino, CA California 91436 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • RELIENE, Ramune PL PT RO RS SE SI SK SM TR Los Angeles, CA California 90024 (US) • BORNEMAN, James (30) Priority: 22.02.2013 US 201361956186 P Riverside, CA California 92506 (US) 26.11.2013 US 201361909242 P • PRESLEY, Laura, L. Santa Maria, CA California 93458 (US) (62) Document number(s) of the earlier application(s) in • BRAUN, Jonathan accordance with Art. 76 EPC: Tarzana, CA California 91356 (US) 14753847.4 / 2 958 575 (74) Representative: Müller-Boré & Partner (71) Applicant: The Regents of the University of Patentanwälte PartG mbB California Friedenheimer Brücke 21 Oakland, CA 94607 (US) 80639 München (DE) (72) Inventors: Remarks: • YAMAMOTO, Mitsuko, L. This application was filed on 27-03-2019 as a Alameda, CA California 94502 (US) divisional application to the application mentioned under INID code 62. (54) FOOD OR BEVERAGE PRODUCT, OR PROBIOTIC COMPOSITION, COMPRISING LACTOBACILLUS JOHNSONII 456 (57) The present invention relates to food products, beverage products and probiotic compositions comprising Lacto- bacillus johnsonii 456. EP 3 536 328 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 536 328 A1 Description CROSS-REFERENCE TO RELATED APPLICATIONS 5 [0001] This application claims the benefit of U.S.
    [Show full text]
  • Supplementary Information for Acute Infection of Mice with Clostridium
    IMM-2013-2862, Sadighi Akha et al-Supplementary Information 1 Supplementary Information for Acute infection of mice with Clostridium difficile leads to eIF2α phosphorylation and pro-survival signalling as part of the mucosal inflammatory response Amir A. Sadighi Akha1, Casey M. Theriot2, John R. Erb-Downward1, Andrew J. McDermott3, Nicole R. Falkowski1, Heather M. Tyra4, D. Thomas Rutkowski4, Vincent B. Young2,3 and Gary B. Huffnagle1,3* IMM-2013-2862, Sadighi Akha et al-Supplementary Information 2 Supplementary Text Materials and Methods for Figures S1 and S2 DNA isolation, amplicon library preparation and 454 pyrosequencing- The DNeasy blood and tissue kit (Qiagen) was used to extract genomic DNA from the caecal and colonic contents obtained from untreated and C. difficile-infected mice. The extraction was performed according to the manufacturer’s instructions except for the following modifications: adding a bead-beating step using UltraClean fecal DNA bead tubes (Mo Bio Laboratories, Carlsbad, CA); doubling the amount of ATL buffer and the proteinase K used in the protocol; and decreasing by half the amount of the AE buffer used to elute the DNA. Subsequently, the V3, V4 and V5 hyper-variable regions of the 16S ribosomal RNA gene in each of the samples were targeted for amplification with the 357F and 929R primer sets [1]. Amplicons were purified with the Agencourt AMPure XP PCR purification system (Beckman Coulter, Indianapolis, IN), and quantified with the Quant- iT PicoGreen dsDNA kit (Life Technologies) to obtain an equal pool for pyrosequencing. They were then sequenced on a Roche 454 GS Junior Titanium platform according to the manufacturer’s specifications.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • Microbial Community Dynamics In
    Microbial community dynamics in traditionally fermented milk PhD thesis Anneloes E Groenenboom Wageningen University and Research 2 Table of contents Chapter 1. Introduction 5 Chapter 2. Microbial communities from spontaneously fermented foods as model system to study eco-evolutionary dynamics 13 Chapter 3. Robust sampling and preservation of DNA for microbial community profiling in field experiments 25 Chapter 4. Microbial population dynamics during traditional production of Mabisi, a spontaneously fermented milk product from Zambia. A field trial. 33 Chapter 5. Does change in bacterial species composition of natural communities reflect adaptation to a new environment? 49 Chapter 6. Bacterial community dynamics in Lait caillé, a traditional product of spontaneous fermentation from Senegal. 65 Chapter 7. General discussion 79 Summary 91 References 95 3 4 1. Introduction This thesis is about Mabisi. In the western world, and maybe anywhere but Zambia, Mabisi is an unknown product. In this country in the middle of Africa, however, Mabisi is a phenomenon; a widely appreciated fermented milk product, which is consumed almost daily by men, women, and children from a very young age. What makes this fermented milk so interesting that I studied it for four years? It is the diversity we find in the bacterial communities that make Mabisi. This PhD thesis is part of a larger project funded by NWO WOTRO on enhancing nutrition security though traditional fermented products (1). In this thesis I would like to show the microbial communities that are responsible for the fermentation and how we can use the constituting bacteria to learn about bacterial community dynamics over time.
    [Show full text]
  • Lactobacillus Helveticus and Bifidobacterium Longum
    www.nature.com/scientificreports OPEN Ingestion of probiotic (Lactobacillus helveticus and Bifdobacterium longum) alters intestinal microbial structure and behavioral expression following social defeat stress Katherine A. Partrick1, Anna M. Rosenhauer1, Jérémie Auger2, Amanda R. Arnold1, Nicole M. Ronczkowski1, Lanaya M. Jackson1, Magen N. Lord1, Sara M. Abdulla1, Benoit Chassaing1,3,4 & Kim L. Huhman1* Social stress exacerbates anxious and depressive behaviors in humans. Similarly, anxiety- and depressive-like behaviors are triggered by social stress in a variety of non-human animals. Here, we tested whether oral administration of the putative anxiolytic probiotic strains Lactobacillus helveticus R0052 and Bifdobacterium longum R0175 reduces the striking increase in anxiety-like behavior and changes in gut microbiota observed following social defeat stress in Syrian hamsters. We administered the probiotic at two diferent doses for 21 days, and 16S rRNA gene amplicon sequencing revealed a shift in microbial structure following probiotic administration at both doses, independently of stress. Probiotic administration at either dose increased anti-infammatory cytokines IL-4, IL-5, and IL-10 compared to placebo. Surprisingly, probiotic administration at the low dose, equivalent to the one used in humans, signifcantly increased social avoidance and decreased social interaction. This behavioral change was associated with a reduction in microbial richness in this group. Together, these results demonstrate that probiotic administration alters gut microbial composition and may promote an anti-infammatory profle but that these changes may not promote reductions in behavioral responses to social stress. Te human gastrointestinal tract houses a vastly abundant community of microorganisms, and it has become increasingly clear that the state of this microbial community can meaningfully impact disease states 1–3.
    [Show full text]
  • Fermented Foods
    Chapter 6 Fermented Foods Fermentation in food processing is the process of converting carbohydrate to alcohol or organic acids using microorganisms, yeasts or bacteria-under anaerobic conditions. Fermented foods are rich in probiotic bacteria so by consuming fermented foods the health of gut microbiome and digestive system can increase and also can enhances the immune system. Sauerkraut Sauerkraut is a finely cut raw cabbage that has been fermented by lactic acid bacteria. It is made by a process of pickling called lactic acid fermentation. The cabbage is finely shredded, layered with salt and left to ferment. Fully cured sauerkraut keeps for several months in an airtight container stored at 150C or below. The fermentation process involves three phases. In the first phase, anaerobic bacteria such as Klebsiella and Enterobacter lead the fermentation and beginning to produce an acidic environment that favors later bacteria. The second phase starks as the acid levels becomes too high for many bacteria and Leuconostoc mesenteroides and other Leuconostoc spp. take dominance. In the third phase, various Lactobacillus species including L. brevis and L. plantarum ferment any remaining sugars, further lowering the pH. Properly cured sauerkraut is sufficiently acidic to prevent a favorable environment for the growth of Clostridium botulinum, the toxins of which cause botulism. Tempeh Tempeh is a traditional Indonesian Soy product made from fermented Soybeans. The principal step in making tempeh is the fermentation of soybeans which undergo inoculation with Rhizopus spp. mold Rhizopus oligosporus. The beans are spread into a thin layer and are allowed to ferment for 24-36 hours at a temperature around 300C.
    [Show full text]
  • Effect of 17Β-Estradiol on a Human Vaginal Lactobacillus Crispatus Strain
    www.nature.com/scientificreports OPEN Efect of 17β‑estradiol on a human vaginal Lactobacillus crispatus strain Maximilien Clabaut1, Amandine Suet2, Pierre‑Jean Racine1, Ali Tahrioui1, Julien Verdon3, Magalie Barreau1, Olivier Maillot1, Agathe Le Tirant4, Madina Karsybayeva5, Coralie Kremser6, Gérard Redziniak7, Cécile Duclairoir‑Poc1, Chantal Pichon2, Sylvie Chevalier1 & Marc G. J. Feuilloley1* Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct efect of 17β‑estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17β‑estradiol (10–6 to 10–10 M) had no efect on L. crispatus growth, but markedly afected the membrane dynamics of this bacterium. This efect appeared consistent with a signal transduction process. The surface polarity and aggregation potential of the bacterium were unafected by exposure to 17β‑estradiol, but its mean size was signifcantly reduced. 17β‑estradiol also promoted biosurfactant production by L. crispatus and adhesion to vaginal VK2/E6E7 cells, but had little efect on bacterial bioflm formation activity. Bioinformatic analysis of L. crispatus identifed a membrane lipid raft–associated stomatin/prohibitin/fotillin/HfK domain containing protein as a potential 17β‑estradiol binding site. Overall, our results reveal direct efects of 17β‑estradiol on L. crispatus. These efects are of potential importance in the physiology of the vaginal environment, through the promotion of lactobacillus adhesion to the mucosa and protection against pathogens. Te human microbiota has a dynamic structure that difers among organs and populations 1. It evolves con- stantly, in response to local and environmental factors 1–3. Te vaginal microbiota is less diverse than other microbiota4 but evolves rapidly with changes in female physiology over time 5.
    [Show full text]
  • Evaluation of Commercially Available Probiotic Products Intended for Children in the Republic of the Philippines and the Republic of Korea
    foods Article Do Your Kids Get What You Paid for? Evaluation of Commercially Available Probiotic Products Intended for Children in the Republic of the Philippines and the Republic of Korea Clarizza May Dioso 1,2, Pierangeli Vital 3, Karina Arellano 2, Haryung Park 2,4, Svetoslav Dimitrov Todorov 2, Yosep Ji 4 and Wilhelm Holzapfel 2,4,* 1 Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines; [email protected] 2 Advanced Green Energy and Environment Department, Handong Global University, Pohang, Gyungbuk 37554, Korea; [email protected] (K.A.); [email protected] (H.P.); [email protected] (S.D.T.) 3 Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101, Philippines; [email protected] 4 HEM Inc., Business Incubator, Handong Global University, Pohang, Gyungbuk 37554, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-20-8455-1360 Received: 11 August 2020; Accepted: 31 August 2020; Published: 3 September 2020 Abstract: A wide range of probiotic products is available on the market and can be easily purchased over the counter and unlike pharmaceutical drugs, their commercial distribution is not strictly regulated. In this study, ten probiotic preparations commercially available for children’s consumption in the Republic of the Philippines (PH) and the Republic of Korea (SK) have been investigated. The analyses included determination of viable counts and taxonomic identification of the bacterial species present in each formulation. The status of each product was assessed by comparing the results with information and claims provided on the label. In addition to their molecular identification, safety assessment of the isolated strains was conducted by testing for hemolysis, biogenic amine production and antibiotic resistance.
    [Show full text]
  • Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard (Calotes Versicolor)
    animals Article Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard (Calotes versicolor) Lin Zhang 1,2,*,† , Fang Yang 3,†, Ning Li 4 and Buddhi Dayananda 5 1 School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China 2 State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China 3 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; [email protected] 4 College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; [email protected] 5 School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Simple Summary: The different gut sections potentially provide different habitats for gut microbiota. We found that Bacteroidetes, Firmicutes, and Proteobacteria were the three primary phyla in gut micro- biota of C. versicolor. The relative abundance of dominant phyla Bacteroidetes and Firmicutes exhibited an increasing trend from the small intestine to the large intestine, and there was a higher abun- dance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the hindgut, and some metabolic pathways were higher in the hindgut. Our results reveal the variations of gut microbiota composition and metabolic pathways in Citation: Zhang, L.; Yang, F.; Li, N.; different parts of the lizards’ intestine. Dayananda, B. Environment- Dependent Variation in Gut Abstract: Vertebrates maintain complex symbiotic relationships with microbiota living within their Microbiota of an Oviparous Lizard gastrointestinal tracts which reflects the ecological and evolutionary relationship between hosts and (Calotes versicolor).
    [Show full text]