The Routledge Companion to Big History Big History and Astronomy
Total Page:16
File Type:pdf, Size:1020Kb
This article was downloaded by: 10.3.98.104 On: 01 Oct 2021 Access details: subscription number Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK The Routledge Companion to Big History Craig Benjamin, Esther Quaedackers, David Baker Big History and astronomy – space is big Publication details https://www.routledgehandbooks.com/doi/10.4324/9780429299322-4 Jonathan Markley Published online on: 21 Aug 2019 How to cite :- Jonathan Markley. 21 Aug 2019, Big History and astronomy – space is big from: The Routledge Companion to Big History Routledge Accessed on: 01 Oct 2021 https://www.routledgehandbooks.com/doi/10.4324/9780429299322-4 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 3 BIG HISTORY AND ASTRONOMY – SPACE IS BIG1 The Fermi paradox: its relevance to big history and the human race Jonathan Markley A typical big history course starts at the Big Bang and proceeds through the formation of galaxies and stars, gradually narrowing to a single star system, and then looking at the formation of a single planet, then narrowing still further to look at the creation and spread of the living organisms that inhabit that planet, and it ultimately culminates with the impact and possible future of a single species amongst those life-forms. In short, it starts with everything, but ends with hu- man beings. In the early part of the course billions of years are covered per class, then later millions, then tens of thousands, and by the end the focus narrows to thousands or even mere centuries. To a purest, this is a violation of the very essence of big history, which seeks to understand the history of everything, and to put everything in its proper context. Imagine a course on the Twentieth Century that finished with the first sixty years in the first two weeks, three more decades in the next two weeks, and by the second half of the course was entirely focused on the later parts of 1999, eventually narrowing to single hours and even minutes in the final day of the century. Walter Alvarez provides a standard justification for this big history approach in his new book A Most Improbable Journey. A Big History of Our Planet and Ourselves. The broader history of everything might seem irrelevant to someone interested in human history, but it is not. The human situation in which we find ourselves is the result of a history that has unfolded across enormous stretches of time and space, and almost everything that has taken place in human history has been strongly influenced by events deeper in the past… For me the astonishing reali- zation that comes from the study of Big History is just how unlikely our world is. At innumerable points in its history, events could have led to totally different results – to a human situation completely different from what we know today or to a world with no humans at all.2 57 Downloaded By: 10.3.98.104 At: 11:07 01 Oct 2021; For: 9780429299322, chapter3, 10.4324/9780429299322-4 Jonathan Markley A similar but more critical description was given by Eric Chaisson (in which he quoted David Christian and Fred Spier). Even big historians’ work is limited. Big History, as most often defined – ‘human history in its wider context’ (Christian…) or ‘an approach to history that places human history in its wider context’ (Spier 2010…) – pertains mostly to the meandering cosmic trek that led specifically to us on Earth. As such, it mainly concerns, in reverse order of appearance, changes that led to humankind, the Earth, the Sun, and the Milky Way Galaxy. Scant treatment is given, or need be given, to other galaxies, stars, or planets throughout the almost unimaginably vast Universe, for the goal of Big History is to place humanity itself into a larger cosmic perspective.3 In this chapter, I argue that big historians must indeed consider other galaxies and other planets, and that this is actually an essential part of investigating the final part of Walter Alvarez’s point: the improbability of the presence of human beings on a planet like this. There is more at stake than the particular forces that shaped a single star sys- tem, and the wider story does in fact help us understand the “trek” that led to us here. The Fermi paradox was first expressed by Enrico Fermi, probably around May 1950, “where is everybody?”4 A small group of scientists had been discussing the possibility of visits to Earth by flying saucers and led Fermi to wonder why this didn’t seem to have occurred and speculated about a number of reasons why. (It might be impossible, or not worth the effort, or it might take too long, etc.) Since this initial conversation, the question has grown more broadly to wonder why we have never been able to detect the presence of intelligent life anywhere in the Universe beyond our single planet. Building from this abstract question and the increasing possibility that radio tele- scopes might be able to detect the presence of intelligent life elsewhere, Frank Drake formulated the Drake Equation in 1961.5 N = R* • fp • ne • fl • fi • fc • L N = the number of advanced aliens that emit electro-magnetic signals that we can detect. R* = the speed at which suitable stars form that can support intelligent life. fp = the proportion of those stars that have planets. ne = the number of planets, per star system, that have an environment that can sus- tain life. fl = the proportion of those planet on which you actually get life. fi = the proportion of those planets on which you get intelligent life. fc = the proportion of those intelligence species that develop technology so that they emit signals we can detect. L = the amount of time those signal emitting intelligent species have been doing so. The Drake Equation was not meant as a tool to actually calculate how many alien civilizations there are, but rather is a tool to consider what information is needed in 58 Downloaded By: 10.3.98.104 At: 11:07 01 Oct 2021; For: 9780429299322, chapter3, 10.4324/9780429299322-4 Big History and astronomy order to answer that question. At this point we are completely unable to estimate some of these variables. For example, until we actually start finding planets with evidence of life, any attempt to assign a value to fl (the fraction of planets on which life appears) is pure conjecture. However, in 1961 fp (fraction of stars with planetary systems) was also a complete unknown. The first exoplanet (a planet circling a star other than our own) was not confirmed until 1995 (the planet was named 51 Pega- sus b), but since that time the number has skyrocketed, particularly since the launch of the Kepler space mission in 2009. As of the end of May 2018, NASA listed 3,730 confirmed exoplanets, in 2,783 star systems, with another 4,496 candidates awaiting confirmation. 929 of those planets are defined as “terrestrial” (as opposed to gas gi- ants, etc.)6 TESS (Transiting Exoplanet Survey Satellite) was launched aboard a SpaceX Falcon 9 on April 18, 2018, and (at the time of writing this chapter) was on track to reach its target orbit by mid-June 2018. Once results from TESS start coming in, the count is likely to increase rapidly. Assuming that the James Webb Space Tele- scope ( JWST) is launched successfully in 2020, the number of confirmed planets will reliably rise into the hundreds of thousands. By that point it should become relatively simple to make a close estimate of the value of fp but even without that, we can now say that planets are very common, and the value is likely to be relatively high. The quality of the data that will be produced by TESS and JWST will also make it possible to reasonably estimate the value of ne, the number of planets with an environment suitable for life. The last factor (L) changes over time, because it really relates to how long humans have themselves had the technology to detect signals from other planets. Heinrich Hertz was the first man to transmit and receive controlled radio waves in the 1880s, and the use of radio did not become widespread until the twentieth century.7 Serious attempts at SETI (Search for Extra-Terrestrial Intelligence) have only been made since the 1960s. That means that in 2018, there is only a 60-year window in which we could have detected intelligent life. If a civilization rose and fell before that time so that its signals didn’t reach us in the correct window, we would never know. If a technological civilization arose at about the same time as ours, then it would have to be within 100 light years for us to be able to detect its emissions, as otherwise those signals wouldn’t have arrived here yet.