Could Affect Tech Advances in Space 14 May 2014, by Elizabeth Howell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture-29 (PDF)
Life in the Universe Orin Harris and Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Spring 2021 c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 1 / 95 Overview Dating Rocks Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 2 / 95 Dating Rocks Zircon Dating Sedimentary Grand Canyon Life on Earth How Did Life Arise? Life in the Solar System Life Around Dating Rocks Other Stars Interstellar Travel SETI Review c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 3 / 95 Zircon Dating Zircon, (ZrSiO4), minerals incorporate trace amounts of uranium but reject lead. Naturally occuring uranium: • U-238: 99.27% • U-235: 0.72% Decay chains: • 238U −→ 206Pb, τ =4.47 Gyrs. • 235U −→ 207Pb, τ = 704 Myrs. 1956, Clair Camron Patterson dated the Canyon Diablo meteorite: τ =4.55 Gyrs. c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 4 / 95 Dating Sedimentary Rocks • Relative ages: Deeper layers were deposited earlier • Absolute ages: Decay of radioactive isotopes old (deposited last) oldest (depositedolder first) c 2012-2021 G. Anderson., O. Harris Universe: Past, Present & Future – slide 5 / 95 Grand Canyon: Earth History from 200 million - 2 billion yrs ago. Dating Rocks Life on Earth Earth History Timeline Late Heavy Bombardment Hadean Shark Bay Stromatolites Cyanobacteria Q: Earliest Fossils? Life on Earth O2 History Q: Life on Earth How Did Life Arise? Life in the Solar System Life Around Other Stars Interstellar Travel SETI Review c 2012-2021 G. -
A Theoretical Astro-Biological Solution for Femi's Paradox
2019 International Conference on Social Science, Economics and Management Research (SSEMR 2019) ISBN: 978-1-60595-638-1 A Theoretical Astro-biological Solution for Femi’s Paradox Xiang-rui LUO* and Wei WANG University of North Carolina at Chapel Hill, NC, USA Guiyang University, Guizhou, China *Corresponding author Keywords: Astrophysics, Femi’s paradox, Extraterrestrial civilizations. Abstract. The Great Filter Theory is a commonly accepted solution for Fermi’s Paradox, indicating that there is a huge wall preventing the intelligent species from achieving Level III Civilization, Galactic Civilization, which has the ability to control the energy on the scale its entire galaxy. There are many forms of hypothesis about what the Great Filter is, such as unbreakable light speed limit. Here we analyze the hypothesis that the Great Filter is the irreconcilable predicament between advanced technology and limited lifespan, which inevitably leads to stagnation in technology development. Introduction The Fermi paradox, or Fermi's paradox is the apparent contradiction between the lack of evidence and high probability estimates for the existence of extraterrestrial civilizations. The basic reasoning line, made by physicists Enrico Fermi (1901–1954) and Michael H. Hart (born 1932), are: There are at least 100 billion planets in our Galaxy alone (Cassan et al. 2012), and about 20% are of habitable zone (Petigura et al. 2013). With high probability, some of these stars have Earth-like planets, and if the Earth is typical, some may have developed intelligent life. Some of these civilizations may have developed interstellar travel, a step the Earth is investigating now. Even at the slow pace of currently envisioned interstellar travel, the Milky Way galaxy could be completely traversed in a few million years. -
Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect. -
Fermi's Paradox Is a Daunting Problem – Under Whatever Label
Fermi's Paradox Is a Daunting Problem – Under Whatever Label Milan M. Dirkovid1 Astronomical Observatory of Belgrade, Volgina 7, 11000 Belgrade, Serbia 1. Introduction Gray (2015) argued that Fermi's paradox (FP) is a misnomer, and it is not a valid paradox. Gray also speculated that the argument was misattributed to Fermi, whose lunchtime remarks did not pertain to the existence of extraterrestrial intelligence, but to the feasibility of interstellar travel. Instead, the paradox is ascribed to Hart and Tipler, and it is further suggested that the paradox is not a “real” problem or research subject and should not be used in debates about SETI projects. The arguments given are unpersuasive, ahistorical, and, in at least one instance, clearly hinge on literalistic and uncharitable reading of evidence. Instead, I argue the following three points: (i) Contrary to Gray’s assertion, the historical issue of naming of ideas or concepts is completely divorced from their epistemic status. (ii) FP is easily and smoothly generalized into the “Great Silence” paradox, so it makes no sense either theoretically or empirically to separate the two. (iii) In sharp contrast to the main implication of Gray’s paper, FP has become more aggravated lately due to advances in astrobiology. Research that deals with FP has greatly expanded in recent years on both a theoretical and observational stage (Davies 2010, 2012; Vukotid and Dirkovid 2012; Barlow 2013; Hair and Hedman 2013; Davies and Wagner 2013; Armstrong and Sandberg 2013; Lampton 2013; Cartin 2014; Nunn, Guy, and Bell 2014; Wright et al. 2014; Spivey 2015; Griffith et al. -
Where Are They? Why I Hope the Search for Extraterrestrial Life Finds Nothing
Close Window May/June 2008 Where Are They? Why I hope the search for extraterrestrial life finds nothing. By Nick Bostrom People got very excited in 2004 when NASA's rover Opportunity discovered evidence that Mars had once been wet. Where there is water, there may be life. After more than 40 years of human exploration, culminating in the ongoing Mars Exploration Rover mission, scientists are planning still more missions to study the planet. The Phoenix, an interagency scientific probe led by the Lunar and Planetary Laboratory at the University of Arizona, is scheduled to land in late May on Mars's frigid northern arctic, where it will search for soils and ice that might be suitable for microbial life (see "Mission to Mars," November/December 2007). The next decade might see a Mars Sample Return mission, which would use robotic systems to collect samples of Martian rocks, soils, and atmosphere and return them to Earth. We could then analyze the samples to see if they contain any traces of life, whether extinct or still active. Such a discovery would be of tremendous scientific significance. What could be more fascinating than discovering life that had evolved entirely independently of life here on Earth? Many people would also find it heartening to learn that we are not entirely alone in this vast, cold cosmos. But I hope that our Mars probes discover nothing. It would be good news if we find Mars to be sterile. Dead rocks and lifeless sands would lift my spirit. Conversely, if we discovered traces of some simple, extinct life-form--some bacteria, some algae--it would be bad news. -
Arxiv:1910.06396V4 [Physics.Pop-Ph] 12 Jun 2021 ∗ Rmtv Ieeitdi H R-Oa Eua(Vni H C System)
Nebula-Relay Hypothesis: Primitive Life in Nebula and Origin of Life on Earth Lei Feng1,2, ∗ 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023 2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing University – Purple Mountain Observatory, Nanjing 210093, China Abstract A modified version of panspermia theory, named Nebula-Relay hypothesis or local panspermia, is introduced to explain the origin of life on Earth. Primitive life, acting as the seeds of life on Earth, originated at pre-solar epoch through physicochemical processes and then filled in the pre- solar nebula after the death of pre-solar star. Then the history of life on the Earth can be divided into three epochs: the formation of primitive life in the pre-solar epoch; pre-solar nebula epoch; the formation of solar system and the Earth age of life. The main prediction of our model is that primitive life existed in the pre-solar nebula (even in the current nebulas) and the celestial body formed therein (i.e. solar system). arXiv:1910.06396v4 [physics.pop-ph] 12 Jun 2021 ∗Electronic address: [email protected] 1 I. INTRODUCTION Generally speaking, there are several types of models to interpret the origin of life on Earth. The two most persuasive and popular models are the abiogenesis [1, 2] and pansper- mia theory [3]. The modern version of abiogenesis is also known as chemical origin theory introduced by Oparin in the 1920s [1], and Haldane proposed a similar theory independently [2] at almost the same time. In this theory, the organic compounds are naturally produced from inorganic matters through physicochemical processes and then reassembled into much more complex living creatures. -
Fermi Paradox: a Simulation Solution YU HAIHAN, MARK
Fermi Paradox: a simulation solution YU HAIHAN, MARK Introduction The paradox was proposed by Fermi in 1950 during a lunch with Edward Teller, Hilbert York and Emil Konopinski. When they were talking about mundane topics, Fermi asked a question:”Where is everybody?”(Webb, 2002) His partners immediately understood what he was talking about: If the extraterrestrial civilization exists, why we have not met them till now? If we believe that there is nothing special about earth and solar system, there should be other civilizations in the universe as its enormous size containing countless probabilities. Under such assumptions, the paradox occurred. To provide a forceful explanation, many efforts have been paid on the analysis on Drake equation. Drake equation: The number of civilization in the universe is represented by N. To estimate it, we need to know the yearly rate R at which stars forms the galaxy; the probability fp of stars that possess planets; the number ne of planets with suitable environment for life; the probability fl of suitable planets on which life actually develops; the probability fi of these planets on which develops intelligence; the probability fc of these intelligence that could communicate with other civilizations and the time L that such a culture would devote to communication (Webb, 2002). Though the equation is complicated as above, it can be just divided into 3 main factors. Consider the following equation: n=Npq This equation is provided by Professor David Aldous, which can be viewed as a simple version of Drake equation. In this equation, N is the number of suitable planets for life; p is the chance that an intelligence species would develop a capability to communicate with others and q the chance that such a species would survive in such a way as to be observable (Aldous, 2010). -
1 the SUSTAINABILITY SOLUTION to the FERMI PARADOX Jacob D
THE SUSTAINABILITY SOLUTION TO THE FERMI PARADOX Jacob D. Haqq-Misra∗ Department of Meteorology & Astrobiology Research Center The Pennsylvania State University Seth D. Baum Department of Geography & Rock Ethics Institute The Pennsylvania State University No present observations suggest a technologically advanced extraterrestrial intelligence (ETI) has spread through the galaxy. However, under commonplace assumptions about galactic civilization formation and expansion, this absence of observation is highly unlikely. This improbability is the heart of the Fermi Paradox. The Fermi Paradox leads some to conclude that humans have the only advanced civilization in this galaxy, either because civilization formation is very rare or because intelligent civilizations inevitably destroy themselves. In this paper, we argue that this conclusion is premature by introducing the “Sustainability Solution” to the Fermi Paradox, which questions the Paradox’s assumption of faster (e.g. exponential) civilization growth. Drawing on insights from the sustainability of human civilization on Earth, we propose that faster-growth may not be sustainable on the galactic scale. If this is the case, then there may exist ETI that have not expanded throughout the galaxy or have done so but collapsed. These possibilities have implications for both searches for ETI and for human civilization management. ∗ Email address: [email protected] 1 1. INTRODUCTION The classic Fermi Paradox can lead to the conclusion that humans have formed the first advanced civilization in the galaxy because extraterrestrial intelligence (ETI) has not yet been observed [1]. Numerous resolutions to this paradox have been proposed [2], spanning the range of cosmological limits to sociological assumptions. A popular class of solutions assumes that the evolution of life is rare in the Universe: Earth may not be wholly unique, but other inhabited planets in the Universe could be too far away for any interaction or detection [3]. -
Dissolving the Fermi Paradox), and Quite Likely Once We Account for the Fermi Observation
Dissolving the Fermi Paradox Anders Sandberg, Eric Drexler and Toby Ord Future of Humanity Institute, Oxford University June 8, 2018 Abstract The Fermi paradox is the conflict between an expectation of a high ex ante probability of intelligent life elsewhere in the universe and the apparently lifeless universe we in fact observe. The expectation that the universe should be teeming with intelligent life is linked to models like the Drake equation, which suggest that even if the probability of intelligent life developing at a given site is small, the sheer multitude of possible sites should nonetheless yield a large number of potentially observable civilizations. We show that this conflict arises from the use of Drake-like equations, which implicitly assume certainty regarding highly uncertain parameters. We examine these parameters, incorporating models of chem- ical and genetic transitions on paths to the origin of life, and show that extant scientific knowledge corresponds to uncertainties that span multi- ple orders of magnitude. This makes a stark difference. When the model is recast to represent realistic distributions of uncertainty, we find a sub- stantial ex ante probability of there being no other intelligent life in our observable universe, and thus that there should be little surprise when we fail to detect any signs of it. This result dissolves the Fermi paradox, and in doing so removes any need to invoke speculative mechanisms by which civilizations would inevitably fail to have observable effects upon the universe. 1 Introduction While working at the Los Alamos National Laboratory in 1950, Enrico Fermi famously asked his colleagues: ”Where are they?” [1]. -
Life Before Fermi – Back to the Solar System Dr David L Clements
Life Before Fermi – Back to the Solar System Dr David L Clements Astrophysics Group, Blackett Lab, Physics Department, Imperial College, Prince Consort Road, London SW7 2AZ, UK Abstract The existence of intelligent, interstellar traveling and colonising life is a key assumption behind the Fermi Paradox. Until recently, detecting signs of life elsewhere has been so technically challenging as to seem almost impossible. However, new observational insights and other developments mean that signs of life elsewhere might realistically be uncovered in the next decade or two. We here review what are believed to be the basic requirements for life, the history of life on Earth, and then apply this knowledge to potential sites for life in our own Solar System. We conclude that the necessities of life – liquid water and sources of energy – are in fact quite common in the Solar System, but most potential sites are beneath the icy surfaces of gas giant moons. If this is the case elsewhere in the Galaxy, life may be quite common but, even if intelligence develops, is essentially sealed in a finite environment, unable to communicate with the outside world. 1. Introduction The central realisation of the Fermi Paradox (see eg. Brin, 1983; Hart, 1975) is that a space- faring civilisation, spreading from habitable planet to habitable planet even at speeds substantially below that of light, can visit every star in the Galaxy on a timescale of 50- 100Myrs. This is a very small timescale compared to the age of the Galaxy (~10 Gyrs) or the age of the Sun (4.5 Gyrs). -
An Answer to Fermi's Paradox in the Prevalence of Ocean Worlds?
Habitable Worlds 2017 (LPI Contrib. No. 2042) 4006.pdf An Answer to Fermi’s Paradox In the Prevalence of Ocean Worlds? S. A. Stern1, 1Southwest Research Institute, Space Science and Engineering Divisdion, 1050 Walnut Street, Suite 300, Boulder, CO 80503, [email protected] Introduction: The Fermi Paradox asks the question about main sequence to stellar remnants). And (2) Environmental extraterrestrial civilizations, “Where are they?” Given specu- Stability. Again owing to the depth of typical Type II oceans lations based on numerical evaluations of the Drake Equation and the overlaying thermal insulation provided by the plane- that would seem to indicate that the likelihood of precisely tary lid atop these oceans, these environments are protected N=1 communicating extraterrestrial civilizations in the Uni- from numerous kinds of external risks to life, such as im- verse is small (i.e., that we are unique), the Fermi Paradox pacts, radiation, surface climate and obliquity cycles, poison- has not been resolved. Many explanations have been prof- ous atmospheres, and nearby deleterious astrophysical events fered [1]. We suggest another, that the great majority of such as novae and supernovae, hazards stellar flares, and worlds with biology and civilizations are interior ocean even phenomena like the Faint Early Sun. As a result of these worlds, cut off from communication because they are inside factors, WOWs of Type II require much less of their parent of their host world, therefore not easily revealing themselves. planet and star to remain oceans viable for life than do ocean The Fermi Paradox: The Fermi Paradox (hereafter, FP) worlds of Type I. -
Jill Tarter PUBLIC LECTURE TRANSCRIPT
Jill Tarter PUBLIC LECTURE TRANSCRIPT March 3, 2015 KANE HALL 130 | 7:30 P.M. TABLE OF CONTENTS INTRODUCTION, page 1 Marie Clement, Graduate Student, Chemistry FEATURED SPEAKER, page 1 Jill Tarter, Bernard M. Oliver chair for SETI Q&A SESSION, page 8 OFFICE OF PUBLIC LECTURES So our speaker tonight is Dr. Jill Cornell Tarter. Jill Tarter holds INTRODUCTION the Bernard M. Oliver chair for SETI, the Search for Extraterrestrial Intelligence at the SETI Institute in Mountain View, California. Tarter received her Bachelor of Engineering Physics degree with distinction from Cornell University and her Marie Clement master's degree and Ph.D. in astronomy from the University of California Berkeley. She served as project scientist for NASA Graduate Student SETI program, the High Resolution Microwave Survey, and has conducted numerous observational programs at radio Good evening, and welcome to tonight's Jessie and John Danz observatories worldwide. Since the termination of funding for endowed public lecture with Jill Cornell Tarter. I am Marie NASA SETI program in 1993, she has served in a leadership role Clement, a graduate student in the chemistry department and a to secure private funding to continue this exploratory science. member of the student organization, Women in Chemical Tarter’s work has brought her wide recognition in the scientific Sciences. Before we introduce tonight's speaker, I want to community, including the Lifetime Achievement Award from share some background about the generous gift to the Women in Aerospace, two Public Service Medals from NASA, University of Washington that allows the Graduate School to Chabot Observatory’s Person of the Year award, Women of host the series: the Jessie and John Danz Endowment.