Welcome to Class 15: Drake Equation, SETI & Fermi Paradox
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 29Th Annual Meeting the 29Th Annual Meeting of the Society Took Place on April 17Th, 2016 Program and Abstracts Program
The 29th annual meeting The 29th annual meeting of the society took place on April 17th, 2016 Program and Abstracts Program: Program of the 29th annual meeting Time Lecturer Lecture Title 8:45- Refreshments & Gathering 9:05 Session 1 -Astrobiology (Doron Lancet, Chair; Amri Wandel, Organizer) 9:05- Gonen Ashkenasy Opening Remarks 9:15 (BGU) 9:15- Ravit Helled Methane-Rich Planets and the Characterization of Exoplanets 9:45 (TAU) 9:45- Sohan Jheeta (NoR Formation of Glycolaldehyde (HOCH2CHO) from Pure 10:10 HGT, LUCA) Methanol in Astrophysical Ice Analogues 10:10- Joseph Is Liquid Water Essential for Life? A Reassessment 10:35 Gale (HUJI) 10:35- Coffee break 11:00 Session 2 - Evolution (Addy Pross, Chair) 11:00- Robert Pascal Identifying the Kinetic, Thermodynamic and Chemical 11:40 (CNRS Conditions for Stability and Complexity in Living Systems Montpellier) 11:40- Omer Markovitch Predicting Proto-Species Emergence in Complex Networks 12:05 (Newcastle) 12:05- Amir Aharoni Engineering a Species Barrier in Yeast 12:30 (BGU) 12:30- Jayanta Nanda Spontaneous Evolution of β-Sheet Forming Self Replicating 12:55 (BGU) Peptides 12:55- Lunch 14:05 Session 3 - Origins of Order and Complexity (Gonen Ashkenasy, Chair; Tal Mor, Organizer) 14:05- Prof. Zvi HaCohen, Greetings 14:15 Rector (BGU) 14:15- Doron Composomics: a Common Biotic Thread 14:45 Lancet (WIS) 14:45- Avshalom Elitzur Living State Physics: Does Life's Uniqueness Elude Scientific 15:10 (IYAR) Definition? 15:10- Tal Mor Origins of Translation: Speculations about the First and the 15:35 -
Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect. -
Does the Rapid Appearance of Life on Earth Suggest That Life Is Common in the Universe?
ASTROBIOLOGY Volume 2, Number 3, 2002 © Mary Ann Liebert, Inc. Does the Rapid Appearance of Life on Earth Suggest that Life Is Common in the Universe? CHARLES H. LINEWEAVER 1,2 and TAMARA M. DAVIS 1 ABSTRACT It is sometimes assumed that the rapidity of biogenesis on Earth suggests that life is common in the Universe. Here we critically examine the assumptions inherent in this if-life-evolved- rapidly-life-must-be-common argument. We use the observational constraints on the rapid- ity of biogenesis on Earth to infer the probability of biogenesis on terrestrial planets with the same unknown probability of biogenesis as the Earth. We find that on such planets, older than ,1 Gyr, the probability of biogenesis is .13% at the 95% confidence level. This quan- tifies an important term in the Drake Equation but does not necessarily mean that life is com- mon in the Universe. Key Words: Biogenesis—Drake Equation. Astrobiology 2, 293–304. THE BIOGENESIS LOTTERY duction–oxidation pairs are common (Nealson and Conrad, 1999). UCHOFCURRENTASTROBIOLOGICALRESEARCH Mis focused on learning more about the early It is difficult to translate this circumstantial ev- evolution of the Earth and about the origin of life. idence into an estimate of how common life is in We may be able to extrapolate and generalize our the Universe. Without definitive detections of ex- knowledge of how life formed here to how it traterrestrial life we can say very little about how might have formed elsewhere. Indirect evidence common it is or even whether it exists. Our exis- suggesting that life may be common in the Uni- tence on Earth can tell us little about how com- verse includes: mon life is in the Universe or about the proba- bility of biogenesis on a terrestrial planet because, Sun-like stars are common. -
The Drake Equation the Drake Equation, Which We Encountered in the Very First Lecture of This Class, Is a Way to Take the Questi
The Drake Equation The Drake equation, which we encountered in the very first lecture of this class, is a way to take the question “How many communicative civilizations are there currently in our galaxy?” and break it into several factors that we estimate as best we can. In this class we will go into detail about this equation. We will find that we now have a decent idea of the values of a couple of the factors, but that many are still guesswork. We’ll do our best to make our guesses informed. We will also discover that some people have reformulated the equation by adding a number of other factors they consider crucial to having technologically adept life. The remarkable and subtle effect of this is that, depending on how many factors you think appropriate, you can get the conclusions you want while appearing reasonable and conservative throughout. That is, if you think many civilizations exist, you can use the Drake equation to demonstrate this. If you think we are the only ones, you can get the equation to say that as well. With this in mind, we should approach the Drake equation as a way of framing our discussion as opposed to as a method of determining the answer rigorously. The equation itself and its factors The original form of the equation was written by Frank Drake in 1960 in preparation for a meeting in Green Bank, West Virginia. It says: ∗ N = R × fp × ne × fl × fi × fc × L . (1) Here: • N is the number of currently active, communicative civilizations in our galaxy. -
Fermi's Paradox Is a Daunting Problem – Under Whatever Label
Fermi's Paradox Is a Daunting Problem – Under Whatever Label Milan M. Dirkovid1 Astronomical Observatory of Belgrade, Volgina 7, 11000 Belgrade, Serbia 1. Introduction Gray (2015) argued that Fermi's paradox (FP) is a misnomer, and it is not a valid paradox. Gray also speculated that the argument was misattributed to Fermi, whose lunchtime remarks did not pertain to the existence of extraterrestrial intelligence, but to the feasibility of interstellar travel. Instead, the paradox is ascribed to Hart and Tipler, and it is further suggested that the paradox is not a “real” problem or research subject and should not be used in debates about SETI projects. The arguments given are unpersuasive, ahistorical, and, in at least one instance, clearly hinge on literalistic and uncharitable reading of evidence. Instead, I argue the following three points: (i) Contrary to Gray’s assertion, the historical issue of naming of ideas or concepts is completely divorced from their epistemic status. (ii) FP is easily and smoothly generalized into the “Great Silence” paradox, so it makes no sense either theoretically or empirically to separate the two. (iii) In sharp contrast to the main implication of Gray’s paper, FP has become more aggravated lately due to advances in astrobiology. Research that deals with FP has greatly expanded in recent years on both a theoretical and observational stage (Davies 2010, 2012; Vukotid and Dirkovid 2012; Barlow 2013; Hair and Hedman 2013; Davies and Wagner 2013; Armstrong and Sandberg 2013; Lampton 2013; Cartin 2014; Nunn, Guy, and Bell 2014; Wright et al. 2014; Spivey 2015; Griffith et al. -
Arxiv:1910.06396V4 [Physics.Pop-Ph] 12 Jun 2021 ∗ Rmtv Ieeitdi H R-Oa Eua(Vni H C System)
Nebula-Relay Hypothesis: Primitive Life in Nebula and Origin of Life on Earth Lei Feng1,2, ∗ 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023 2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing University – Purple Mountain Observatory, Nanjing 210093, China Abstract A modified version of panspermia theory, named Nebula-Relay hypothesis or local panspermia, is introduced to explain the origin of life on Earth. Primitive life, acting as the seeds of life on Earth, originated at pre-solar epoch through physicochemical processes and then filled in the pre- solar nebula after the death of pre-solar star. Then the history of life on the Earth can be divided into three epochs: the formation of primitive life in the pre-solar epoch; pre-solar nebula epoch; the formation of solar system and the Earth age of life. The main prediction of our model is that primitive life existed in the pre-solar nebula (even in the current nebulas) and the celestial body formed therein (i.e. solar system). arXiv:1910.06396v4 [physics.pop-ph] 12 Jun 2021 ∗Electronic address: [email protected] 1 I. INTRODUCTION Generally speaking, there are several types of models to interpret the origin of life on Earth. The two most persuasive and popular models are the abiogenesis [1, 2] and pansper- mia theory [3]. The modern version of abiogenesis is also known as chemical origin theory introduced by Oparin in the 1920s [1], and Haldane proposed a similar theory independently [2] at almost the same time. In this theory, the organic compounds are naturally produced from inorganic matters through physicochemical processes and then reassembled into much more complex living creatures. -
Fermi Paradox: a Simulation Solution YU HAIHAN, MARK
Fermi Paradox: a simulation solution YU HAIHAN, MARK Introduction The paradox was proposed by Fermi in 1950 during a lunch with Edward Teller, Hilbert York and Emil Konopinski. When they were talking about mundane topics, Fermi asked a question:”Where is everybody?”(Webb, 2002) His partners immediately understood what he was talking about: If the extraterrestrial civilization exists, why we have not met them till now? If we believe that there is nothing special about earth and solar system, there should be other civilizations in the universe as its enormous size containing countless probabilities. Under such assumptions, the paradox occurred. To provide a forceful explanation, many efforts have been paid on the analysis on Drake equation. Drake equation: The number of civilization in the universe is represented by N. To estimate it, we need to know the yearly rate R at which stars forms the galaxy; the probability fp of stars that possess planets; the number ne of planets with suitable environment for life; the probability fl of suitable planets on which life actually develops; the probability fi of these planets on which develops intelligence; the probability fc of these intelligence that could communicate with other civilizations and the time L that such a culture would devote to communication (Webb, 2002). Though the equation is complicated as above, it can be just divided into 3 main factors. Consider the following equation: n=Npq This equation is provided by Professor David Aldous, which can be viewed as a simple version of Drake equation. In this equation, N is the number of suitable planets for life; p is the chance that an intelligence species would develop a capability to communicate with others and q the chance that such a species would survive in such a way as to be observable (Aldous, 2010). -
Nasa and the Search for Technosignatures
NASA AND THE SEARCH FOR TECHNOSIGNATURES A Report from the NASA Technosignatures Workshop NOVEMBER 28, 2018 NASA TECHNOSIGNATURES WORKSHOP REPORT CONTENTS 1 INTRODUCTION .................................................................................................................................................................... 1 What are Technosignatures? .................................................................................................................................... 2 What Are Good Technosignatures to Look For? ....................................................................................................... 2 Maturity of the Field ................................................................................................................................................... 5 Breadth of the Field ................................................................................................................................................... 5 Limitations of This Document .................................................................................................................................... 6 Authors of This Document ......................................................................................................................................... 6 2 EXISTING UPPER LIMITS ON TECHNOSIGNATURES ....................................................................................................... 9 Limits and the Limitations of Limits ........................................................................................................................... -
1 the SUSTAINABILITY SOLUTION to the FERMI PARADOX Jacob D
THE SUSTAINABILITY SOLUTION TO THE FERMI PARADOX Jacob D. Haqq-Misra∗ Department of Meteorology & Astrobiology Research Center The Pennsylvania State University Seth D. Baum Department of Geography & Rock Ethics Institute The Pennsylvania State University No present observations suggest a technologically advanced extraterrestrial intelligence (ETI) has spread through the galaxy. However, under commonplace assumptions about galactic civilization formation and expansion, this absence of observation is highly unlikely. This improbability is the heart of the Fermi Paradox. The Fermi Paradox leads some to conclude that humans have the only advanced civilization in this galaxy, either because civilization formation is very rare or because intelligent civilizations inevitably destroy themselves. In this paper, we argue that this conclusion is premature by introducing the “Sustainability Solution” to the Fermi Paradox, which questions the Paradox’s assumption of faster (e.g. exponential) civilization growth. Drawing on insights from the sustainability of human civilization on Earth, we propose that faster-growth may not be sustainable on the galactic scale. If this is the case, then there may exist ETI that have not expanded throughout the galaxy or have done so but collapsed. These possibilities have implications for both searches for ETI and for human civilization management. ∗ Email address: [email protected] 1 1. INTRODUCTION The classic Fermi Paradox can lead to the conclusion that humans have formed the first advanced civilization in the galaxy because extraterrestrial intelligence (ETI) has not yet been observed [1]. Numerous resolutions to this paradox have been proposed [2], spanning the range of cosmological limits to sociological assumptions. A popular class of solutions assumes that the evolution of life is rare in the Universe: Earth may not be wholly unique, but other inhabited planets in the Universe could be too far away for any interaction or detection [3]. -
Dissolving the Fermi Paradox), and Quite Likely Once We Account for the Fermi Observation
Dissolving the Fermi Paradox Anders Sandberg, Eric Drexler and Toby Ord Future of Humanity Institute, Oxford University June 8, 2018 Abstract The Fermi paradox is the conflict between an expectation of a high ex ante probability of intelligent life elsewhere in the universe and the apparently lifeless universe we in fact observe. The expectation that the universe should be teeming with intelligent life is linked to models like the Drake equation, which suggest that even if the probability of intelligent life developing at a given site is small, the sheer multitude of possible sites should nonetheless yield a large number of potentially observable civilizations. We show that this conflict arises from the use of Drake-like equations, which implicitly assume certainty regarding highly uncertain parameters. We examine these parameters, incorporating models of chem- ical and genetic transitions on paths to the origin of life, and show that extant scientific knowledge corresponds to uncertainties that span multi- ple orders of magnitude. This makes a stark difference. When the model is recast to represent realistic distributions of uncertainty, we find a sub- stantial ex ante probability of there being no other intelligent life in our observable universe, and thus that there should be little surprise when we fail to detect any signs of it. This result dissolves the Fermi paradox, and in doing so removes any need to invoke speculative mechanisms by which civilizations would inevitably fail to have observable effects upon the universe. 1 Introduction While working at the Los Alamos National Laboratory in 1950, Enrico Fermi famously asked his colleagues: ”Where are they?” [1]. -
Drake's Equation
Drake’s equation: estimating the number of extraterrestrial civilizations in our galaxy Raphaëlle D. Haywood This activity was largely inspired from an outreach project developed by Exscitec members at Imperial College London, UK. Goals In this workshop, we estimate the number of communicating civilizations in our galaxy! In this first session you will go through the different ingredients required. You will make estimates for each of the variables using both results from recent scientific studies and your best guesses. Next week we will go over each variable in more detail -- make a note of any questions you may have so that we can discuss them. We will compare and discuss everyone’s estimates of N, and will discuss their implications for finding life as well as for the survival of our own species. Outline Estimating the number of extraterrestrial civilizations out there may at first seem like a daunting task, but in 1961 Prof. Frank Drake found a way to break this problem down into a series of much more manageable steps. This is neatly summarized in the following equation, where each of the variables relates to a specific topic: R⁎: Number of Sun-type stars that form each year in our galaxy fp: Fraction of Sun-type stars that host planets ne: Number of Earth-like planets per planetary system, so that fp x ne is the fraction of Sun-type stars that have Earth-like planets fl: Fraction of Earth-like planets where life develops fi: Fraction of life-bearing planets where intelligent life evolves fc: Fraction of planets hosting intelligent life where a communicative, technological civilization arises L: Lifetime (in years) of technologically-advanced, communicating civilizations To obtain N, we simply estimate each of these parameters separately and then we multiply them together. -
Professor Sara Seager Massachusetts Institute of Technology
Professor Sara Seager Massachusetts Institute of Technology Address: Department of Earth Atmospheric and Planetary Science Building 54 Room 1718 Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA, USA 02139 Phone: (617) 253-6779 (direct) E-mail: [email protected] Citizenship: US citizen since 7/20/2010 Birthdate: 7/21/1971 Professional History 1/2011–present: Massachusetts Institute of Technology, Cambridge, MA USA • Class of 1941 Professor (1/2012–present) • Professor of Planetary Science (7/2010–present) • Professor of Physics (7/2010–present) • Professor of Aeronautical and Astronautical Engineering (7/2017–present) 1/2007–12/2011: Massachusetts Institute of Technology, Cambridge, MA USA • Ellen Swallow Richards Professorship (1/2007–12/2011) • Associate Professor of Planetary Science (1/2007–6/2010) • Associate Professor of Physics (7/2007–6/2010) • Chair of Planetary Group in the Dept. of Earth, Atmospheric, and Planetary Sciences (2007–2015) 08/2002–12/2006: Carnegie Institution of Washington, Washington, DC, USA • Senior Research Staff Member 09/1999–07/2002: Institute for Advanced Study, Princeton NJ • Long Term Member (02/2001–07/2002) • Short Term Member (09/1999–02/2001) • Keck Fellow Educational History 1994–1999 Ph.D. “Extrasolar Planets Under Strong Stellar Irradiation” Department of Astronomy, Harvard University, MA, USA 1990–1994 B.Sc. in Mathematics and Physics University of Toronto, Canada NSERC Science and Technology Fellowship (1990–1994) Awards and Distinctions Academic Awards and Distinctions 2018 American Philosophical Society Member 2018 American Academy of Arts and Sciences Member 2015 Honorary PhD, University of British Columbia 2015 National Academy of Sciences Member 2013 MacArthur Fellow 2012 Raymond and Beverly Sackler Prize in the Physical Sciences 2012 American Association for the Advancement of Science Fellow 2007 Helen B.