The E-Magazine of the British Interplanetary Society Worlds Beyond

Total Page:16

File Type:pdf, Size:1020Kb

The E-Magazine of the British Interplanetary Society Worlds Beyond The e-Magazine of the British Interplanetary Society Worlds Beyond n this issue, we are pleased to announce and also takes another look at Alex In the next edition, we will have another that Rachel Armstrong FBIS has written Storer’s art. poem from Grant Sorrell, and Richard will Ianother story for us and we have a new be looking into some of the harsh realities author, Grant Sorrell who writes “space” Terry Don discusses a new way forward; of spaceflight, again delving into both fact poetry from the USA. We don’t get many is NASA going to the Moon or Mars and and fiction to show us some surprising people who write poetry in the realms of will it be a joint venture? John Silvester thoughts in an area close to the heart of science and science fiction, but saying that, has written a review of a new collection the BIS. We will also have a review from perhaps I can remind you that there was of science fiction stories by scientists John of Ruth Wheeler’s second book in her a lot of poetry in the BIS science fiction themselves – they are, after all, the very trilogy. anthology Visionary, which is still for sale at people who should know what they’re the BIS website. talking about when tackling this subject. So we start of this edition with Rachel Armstrong’s story: Clinic of Cultured Hearts. Also in this issue, our regular contributor John has also written a review of a new and Richard Hayes has written a Radical upcoming Sci-Fi author Ruth Wheeler, who Terry Henley FBIS Vectors article about some of the has written a trilogy and the first book is All Editor Odyssey exoplanets we may see in fact and fiction, Aliens Like Burgers. Clinic of Cultured Hearts by Rachel Armstrong FBIS trung like a marionette, Helena down her left arm and a crushing feeling it had irreparably rotted her muscle and watched the twitching infusion of within her chest – like she’d been caught at another time it would have killed her Scardiac cells empty in pulses from a under a truck. She also thought her whole outright. clear bag. It distorted the apparatus around jaw would explode but that was nothing her like a lens and snaked into an arterial compared to the airlessness and terror she’d But here she was, alive - with nothing shunt somewhere beneath the sheets. experienced in those long moments. Nor did beating on the screen; they’d already she remember whether she’d passed out. digested out the perished old one and It had been chaos of course, but now Just the crushing, brutal, explosive, endless inserted a carbon bio scaffolding frame things were likely on the mend. Although pain from nowhere. around the existing collagen skeleton – an it was daunting that she’d never leave the inviting structural system into which the Moon Base Assisted Living Unit, with all its It was a shock, especially when she’d felt so cardiac stem cells would settle and knit her benefits of reduced gravity on her bones little during the last forty years or so, which a whole new organ. and heart, she could think of worse ways simply compounded the trauma of the than spending however many of her last whole incident. Although she’d exercised Of course, it had been completely different years here. Although frankly, she didn’t feel regularly and eaten sensibly, the detritus for Michael. His entire chest had been old, just a little tired but it was time to face of old age had unavoidably accumulated in cracked opened like a nut when he’d had his facts – despite many advances in longevity her circulation, silted up her arteries until cardiac transplant. How she wished she’d not science, people still got old eventually – but one day, the right coronary artery simply lost him when he was only eighty. The love only if they lived long enough. blocked. of her life. They’d met on a correspondence course when she was pushing fifty but At a hundred and twenty, her first heart There it was on the screen, with a bite taken they’d had such incredible times together. attack had been the most painful thing out of it, cupping her vacant heart’s shadow Frankly, they shared the same soul and she had ever experienced. A searing pain like it was examining finely cut glass. But all the differences and life’s complications Odyssey: The e-Magazine of the British Interplanetary Society: Issue 46 www.bis-space.com 1 simply worked themselves out. Quickly, she stopped herself from thinking about him and his world’s blue gaze. A technique that she’d learned to stop nostalgia and survive advancing age. Forgetting wasn’t the existential poison for immortality, it was all the remembering – regrets, losses, the things that might have been. Stop. An alarm was sounding. She looked over at the liquid tree of infusions that would follow this one, the current one being on its last few pulses. Sacs of turbid liquids, pauses associated with bad news.” so painful?” digital pulses, bleeps, and thin wires splayed over images from her insides –a theatre “I thought that was supposed to be, well Over the next month’s Helena discovered of anatomy which helped her establish a you know a fairytale.” that she was much less able to suppress new intimacy with her own insides, helping her feelings. Sometimes she’d wake and her medical crew review her outputs and “Naturally, we gave little thought to the hear Michael comforting her, or reading her focusing on staying alive without a heart. endocrine functions of the heart, since poetry. At one point, she’d woken from a Several nurses bounced their way from an we’d got very focused on its mechanics. night terror and saw him sitting on the end observation desk, brachiating as much as Besides, it’s simply easier to study pressure, of the bed. walking over to her cot under the influence flow and mechanical power and much of one-sixth earth’s gravity. They appeared harder to measure physical sensations and “Shh!” he put his finger to her lips. “It’s to be at the end of a break, as one of them the emotions that flow in response to the going to be okay.” was still sucking on the end of a drink. world.” Helena realized that she’d have to get used As she was weaned from the drugs that kept to that and she’d quite happily exchange Helena found it odd that a tear involuntarily her stem cells in order and pain at bay, she liquid diets for the prospect of no bedsores. formed in the corner of her eye. learned the art of interoception, where she In fact, it was rather pleasant being in a could monitor the beat of her own heart semi-upright position during recuperation; “So, you’re saying the heart has hormones?” without the need for external apparatus. she could see everything going on, rather With this new skill, she discovered than just the ceiling, which was the view she “Yes, that’s been known for decades. The heightened emotional abilities. No longer remembered from most hospital beds. heart is essential for our emotions and feeling the need to shut out the pain of the works through a whole range of different past, she began to recall her life, magical The staff changed the bags and checked the neuro peptides. We’ve even discovered times, and heartbreak, without the clinic’s various lines, while increasingly irritating that the main Vagus nerve that supplies portfolio of anesthesia – painkillers for the alarms sounded – like enforced ear worm. the heart was also critical in this perceptual body, the mind and soul. Over the next few months Helena began link. Previously we thought it was an to feel decidedly stronger, got used to the “autonomic” system, one that worked In this way, the oldest woman in the solar indignity of regular enemas and felt far less without us being aware of its effects.” system lived a full existence until the grand fatigued. It wasn’t just the lack of gravity; old age of two hundred and ten, when one she’d noticed other things too. Her sense of “Really?” day she told staff nurse Timothy that her smell was stronger, the food tasted better – heart had completed its business – of living and she was becoming more emotional. She “Oh sure, why do you think heart attacks are the world’s accidents. wasn’t sure how she felt about that. Kessler Syndrome Over the last decades, she’d noticed she didn’t have to practice forgetting quite so by Grant Sorrell hard, as she was losing her feelings. She asked Someday satellites and space debris of everything we’ve ever thrown Amanda, her regular staff nurse whether will crash into the finite sky other “clients” had noticed the emotional into each other like a cigarette out the window changes when they grew a new heart. at twenty thousand miles per hour, or a bottle in the ocean. twenty thousand miles above Continue their collisional cascade “Well, of course! While we’ve known for the ground in low earth orbit, until three hundred thousand floating centuries that the heart’s mechanical the beginning of a cosmic cause scraps properties are essential for life, pumping and effect as they divide become double, quadruple, and we’re cast oxygenated blood throughout the body – and fill the void beneath an impassable but what we didn’t know is that it’s also the with pieces of themselves, a growing cloud of their fragments.
Recommended publications
  • The Ethics of Terraforming and Areoforming in an Age of Climate Change
    Engineering Planets, Engineering Ourselves: The Ethics of Terraforming and Areoforming in an Age of Climate Change Patrick D. Murphy (University of Central Florida)1 Abstract The concept of terraforming, the engineered transformation of alien planets into habitats suitable for human settlement, has taken on new meaning in science fiction and contemporary culture as climate change has indicated that human beings are currently transforming this planet but without a clear plan for sustaining inhabitability. Literary depictions by Kim Stanley Robinson of both climate change and terraforming raise ethical questions about the engineering of this and other planets, while the science fiction novels of Joan Slonczewski raise ethical questions about engineering human beings to adapt to alien environments. Together, they provide ways of thinking about the intertwined ethical questions of engineering the biosphere and engineering the species in the context of human and environmental sustainability. In particular, some works, such as the novels of Karen Traviss, raise the issue of how much the human species might have to engineer itself to pay the price of its unplanned engineering of planet Earth. Nearly twenty years ago Bill McKibben claimed that "we are at the end of nature" (8). In support of this seemingly hyperbolic statement, he referred to a 1957 scientific paper which claimed that "Human beings are now carrying out a large scale geophysical experiment" (qtd. in McKibben 10), by pumping rapidly increasing amounts of carbon dioxide into the atmosphere. 1 Patrick Murphy, Department of English, University of Central Florida, Building: CNH301 P.O. Box 161346 Orlando, FL 32816-1346 [email protected] 54 Many people, myself included, thought McKibben had gone over the top.
    [Show full text]
  • The War of the Worlds Postcolonialism, Americanism, and Terrorism in Modern Science Fiction Film
    Durkstra 4167430 | 1 The War of the Worlds Postcolonialism, Americanism, and Terrorism in Modern Science Fiction Film Sytse Durkstra English Language and Culture Supervisor | Chris Louttit Sytse Durkstra | s4167430 | Email [email protected] Durkstra 4167430 | 2 ENGLISH LANGUAGE AND CULTURE Teacher who will receive this document: Chris Louttit Title of document: The War of the Worlds: Postcolonialism, Americanism, and Terrorism in Modern Science Fiction Film Name of course: BA Thesis English Language and Culture Date of submission: 15 June 2015 The work submitted here is the sole responsibility of the undersigned, who has neither committed plagiarism nor colluded in its production. Signed Name of student: Sytse Durkstra Student number: 4167430 Durkstra 4167430 | 3 And this Thing I saw! How can I describe it? A monstrous tripod, higher than many houses, striding over the young pine trees, and smashing them aside in its career; a walking engine of glittering metal, reeling now across the heather, articulate ropes of steel dangling from it, and the clattering tumult of its passage mingling with the riot of the thunder. A flash, and it came out vividly, heeling over one way with two feet in the air, to vanish and reappear almost instantly, as it seemed with the next flash, a hundred yards nearer. - H.G. Wells, The War of the Worlds But who shall dwell in these worlds if they be inhabited? . Are we or they Lords of the World? . And how are all things made for man? - Kepler In our obsession with antagonisms of the moment, we often forget how much unites all the members of humanity.
    [Show full text]
  • The Past Decade and the Future of Cosmology and Astrophysics
    Towards a New Enlightenment? A Transcendent Decade The Past Decade and the Future of Cosmology and Astrophysics Martin Rees Martin Rees is a cosmologist and space scientist. After studying at Cambridge University, he held various posts in the UK and elsewhere, before returning to Cambridge, where he has been a professor, Head of the Institute of Astronomy, and Master of Trinity College. He has contributed to our understanding of galaxy formation, black holes, high-energy phenomena in the cosmos, and the concept of the multiverse. He has received substantial international recognition for his research. He has been much involved in science-related policy, being a member of the UK’s House of Lords and (during 2005–10) President of the Royal Society, the independent scientific academy of the UK Martin Rees and the Commonwealth. Apart from his research publications, he writes and University of Cambridge lectures widely for general audiences, and is the author of eight books, the most recent being On the Future (2018). Recommended books: Universe, Martin Rees, Dorling Kindersley, 2012; On the Future, Martin Rees, Princeton University Press, 2018. In the last decade, there has been dramatic progress in exploring the cosmos. Highlights include close-up studies of the planets and moons of our Solar System; and (even more dramatic) the realization that most stars are orbited by planets, and that there may be millions of Earth-like planets in our Galaxy. On a still larger scale, we have achieved a better understanding of how galaxies have developed, over 13.8 billion years of cosmic history, from primordial fluctuations.
    [Show full text]
  • Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
    Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.
    [Show full text]
  • The Terraforming Timeline. A. J. Berliner1 and C. P. Mckay2
    Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8031.pdf The Terraforming Timeline. A. J. Berliner1 and C. P. McKay2, 1University of California Berkeley, Berkeley, CA 94704, [email protected], 2Space Sciences Division, NASA Ames Research Center, Mountain View, CA 94075. Introduction: Terraforming, the transformation of particularly the winter South Polar Cap, and any CO2 a planet so as to resemble the earth so that it can sup- that is absorbed into the cold ground in the polar re- port widespread life, has been described as a grand gions. Once the warming starts all this releasable CO2 challenge of both space sciences and synthetic biology will go into the atmosphere. Thus, it is important to [1,2]. We propose the following abstract on a Martian know the total before warming starts. Current esti- Terraforming timeline as a guide to shaping planetary mates of the releasable CO2 on Mars today range from science research over the coming century. a little more than the present thin atmosphere to values Terraforming Mars can be divided into two phases. sufficient to create a pressure on Mars equal to the sea The first phase is warming the planet from the present level pressure on Earth. Nitrogen is a fundamental re- average surface temperature of -60ºC to a value close quirement for life and necessary constituent of a to Earth’s average temperature to +15ºC, and re- breathable atmosphere. The recent discovery by the creating a thick CO2 atmosphere [3,4,5,6] This warm- Curiosity Rover of nitrate in the soil on Mars (~0.03% ing phase is relatively easy and quick, and could take by mass) is therefore encouraging for terraforming [7].
    [Show full text]
  • Inventory of CO2 Available for Terraforming Mars
    PERSPECTIVE https://doi.org/10.1038/s41550-018-0529-6 Inventory of CO2 available for terraforming Mars Bruce M. Jakosky 1,2* and Christopher S. Edwards3 We revisit the idea of ‘terraforming’ Mars — changing its environment to be more Earth-like in a way that would allow terres- trial life (possibly including humans) to survive without the need for life-support systems — in the context of what we know about Mars today. We want to answer the question of whether it is possible to mobilize gases present on Mars today in non- atmospheric reservoirs by emplacing them into the atmosphere, and increase the pressure and temperature so that plants or humans could survive at the surface. We ask whether this can be achieved considering realistic estimates of available volatiles, without the use of new technology that is well beyond today’s capability. Recent observations have been made of the loss of Mars’s atmosphere to space by the Mars Atmosphere and Volatile Evolution Mission probe and the Mars Express space- craft, along with analyses of the abundance of carbon-bearing minerals and the occurrence of CO2 in polar ice from the Mars Reconnaissance Orbiter and the Mars Odyssey spacecraft. These results suggest that there is not enough CO2 remaining on Mars to provide significant greenhouse warming were the gas to be emplaced into the atmosphere; in addition, most of the CO2 gas in these reservoirs is not accessible and thus cannot be readily mobilized. As a result, we conclude that terraforming Mars is not possible using present-day technology. he concept of terraforming Mars has been a mainstay of sci- Could the remaining planetary inventories of CO2 be mobi- ence fiction for a long time, but it also has been discussed from lized and emplaced into the atmosphere via current or plausible 1 a scientific perspective, initially by Sagan and more recently near-future technologies? Would the amount of CO2 that could T 2 by, for example, McKay et al.
    [Show full text]
  • Science Fiction Stories with Good Astronomy & Physics
    Science Fiction Stories with Good Astronomy & Physics: A Topical Index Compiled by Andrew Fraknoi (U. of San Francisco, Fromm Institute) Version 7 (2019) © copyright 2019 by Andrew Fraknoi. All rights reserved. Permission to use for any non-profit educational purpose, such as distribution in a classroom, is hereby granted. For any other use, please contact the author. (e-mail: fraknoi {at} fhda {dot} edu) This is a selective list of some short stories and novels that use reasonably accurate science and can be used for teaching or reinforcing astronomy or physics concepts. The titles of short stories are given in quotation marks; only short stories that have been published in book form or are available free on the Web are included. While one book source is given for each short story, note that some of the stories can be found in other collections as well. (See the Internet Speculative Fiction Database, cited at the end, for an easy way to find all the places a particular story has been published.) The author welcomes suggestions for additions to this list, especially if your favorite story with good science is left out. Gregory Benford Octavia Butler Geoff Landis J. Craig Wheeler TOPICS COVERED: Anti-matter Light & Radiation Solar System Archaeoastronomy Mars Space Flight Asteroids Mercury Space Travel Astronomers Meteorites Star Clusters Black Holes Moon Stars Comets Neptune Sun Cosmology Neutrinos Supernovae Dark Matter Neutron Stars Telescopes Exoplanets Physics, Particle Thermodynamics Galaxies Pluto Time Galaxy, The Quantum Mechanics Uranus Gravitational Lenses Quasars Venus Impacts Relativity, Special Interstellar Matter Saturn (and its Moons) Story Collections Jupiter (and its Moons) Science (in general) Life Elsewhere SETI Useful Websites 1 Anti-matter Davies, Paul Fireball.
    [Show full text]
  • Fermi's Paradox Is a Daunting Problem – Under Whatever Label
    Fermi's Paradox Is a Daunting Problem – Under Whatever Label Milan M. Dirkovid1 Astronomical Observatory of Belgrade, Volgina 7, 11000 Belgrade, Serbia 1. Introduction Gray (2015) argued that Fermi's paradox (FP) is a misnomer, and it is not a valid paradox. Gray also speculated that the argument was misattributed to Fermi, whose lunchtime remarks did not pertain to the existence of extraterrestrial intelligence, but to the feasibility of interstellar travel. Instead, the paradox is ascribed to Hart and Tipler, and it is further suggested that the paradox is not a “real” problem or research subject and should not be used in debates about SETI projects. The arguments given are unpersuasive, ahistorical, and, in at least one instance, clearly hinge on literalistic and uncharitable reading of evidence. Instead, I argue the following three points: (i) Contrary to Gray’s assertion, the historical issue of naming of ideas or concepts is completely divorced from their epistemic status. (ii) FP is easily and smoothly generalized into the “Great Silence” paradox, so it makes no sense either theoretically or empirically to separate the two. (iii) In sharp contrast to the main implication of Gray’s paper, FP has become more aggravated lately due to advances in astrobiology. Research that deals with FP has greatly expanded in recent years on both a theoretical and observational stage (Davies 2010, 2012; Vukotid and Dirkovid 2012; Barlow 2013; Hair and Hedman 2013; Davies and Wagner 2013; Armstrong and Sandberg 2013; Lampton 2013; Cartin 2014; Nunn, Guy, and Bell 2014; Wright et al. 2014; Spivey 2015; Griffith et al.
    [Show full text]
  • Arxiv:1910.06396V4 [Physics.Pop-Ph] 12 Jun 2021 ∗ Rmtv Ieeitdi H R-Oa Eua(Vni H C System)
    Nebula-Relay Hypothesis: Primitive Life in Nebula and Origin of Life on Earth Lei Feng1,2, ∗ 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023 2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing University – Purple Mountain Observatory, Nanjing 210093, China Abstract A modified version of panspermia theory, named Nebula-Relay hypothesis or local panspermia, is introduced to explain the origin of life on Earth. Primitive life, acting as the seeds of life on Earth, originated at pre-solar epoch through physicochemical processes and then filled in the pre- solar nebula after the death of pre-solar star. Then the history of life on the Earth can be divided into three epochs: the formation of primitive life in the pre-solar epoch; pre-solar nebula epoch; the formation of solar system and the Earth age of life. The main prediction of our model is that primitive life existed in the pre-solar nebula (even in the current nebulas) and the celestial body formed therein (i.e. solar system). arXiv:1910.06396v4 [physics.pop-ph] 12 Jun 2021 ∗Electronic address: [email protected] 1 I. INTRODUCTION Generally speaking, there are several types of models to interpret the origin of life on Earth. The two most persuasive and popular models are the abiogenesis [1, 2] and pansper- mia theory [3]. The modern version of abiogenesis is also known as chemical origin theory introduced by Oparin in the 1920s [1], and Haldane proposed a similar theory independently [2] at almost the same time. In this theory, the organic compounds are naturally produced from inorganic matters through physicochemical processes and then reassembled into much more complex living creatures.
    [Show full text]
  • Fermi Paradox: a Simulation Solution YU HAIHAN, MARK
    Fermi Paradox: a simulation solution YU HAIHAN, MARK Introduction The paradox was proposed by Fermi in 1950 during a lunch with Edward Teller, Hilbert York and Emil Konopinski. When they were talking about mundane topics, Fermi asked a question:”Where is everybody?”(Webb, 2002) His partners immediately understood what he was talking about: If the extraterrestrial civilization exists, why we have not met them till now? If we believe that there is nothing special about earth and solar system, there should be other civilizations in the universe as its enormous size containing countless probabilities. Under such assumptions, the paradox occurred. To provide a forceful explanation, many efforts have been paid on the analysis on Drake equation. Drake equation: The number of civilization in the universe is represented by N. To estimate it, we need to know the yearly rate R at which stars forms the galaxy; the probability fp of stars that possess planets; the number ne of planets with suitable environment for life; the probability fl of suitable planets on which life actually develops; the probability fi of these planets on which develops intelligence; the probability fc of these intelligence that could communicate with other civilizations and the time L that such a culture would devote to communication (Webb, 2002). Though the equation is complicated as above, it can be just divided into 3 main factors. Consider the following equation: n=Npq This equation is provided by Professor David Aldous, which can be viewed as a simple version of Drake equation. In this equation, N is the number of suitable planets for life; p is the chance that an intelligence species would develop a capability to communicate with others and q the chance that such a species would survive in such a way as to be observable (Aldous, 2010).
    [Show full text]
  • 1 the SUSTAINABILITY SOLUTION to the FERMI PARADOX Jacob D
    THE SUSTAINABILITY SOLUTION TO THE FERMI PARADOX Jacob D. Haqq-Misra∗ Department of Meteorology & Astrobiology Research Center The Pennsylvania State University Seth D. Baum Department of Geography & Rock Ethics Institute The Pennsylvania State University No present observations suggest a technologically advanced extraterrestrial intelligence (ETI) has spread through the galaxy. However, under commonplace assumptions about galactic civilization formation and expansion, this absence of observation is highly unlikely. This improbability is the heart of the Fermi Paradox. The Fermi Paradox leads some to conclude that humans have the only advanced civilization in this galaxy, either because civilization formation is very rare or because intelligent civilizations inevitably destroy themselves. In this paper, we argue that this conclusion is premature by introducing the “Sustainability Solution” to the Fermi Paradox, which questions the Paradox’s assumption of faster (e.g. exponential) civilization growth. Drawing on insights from the sustainability of human civilization on Earth, we propose that faster-growth may not be sustainable on the galactic scale. If this is the case, then there may exist ETI that have not expanded throughout the galaxy or have done so but collapsed. These possibilities have implications for both searches for ETI and for human civilization management. ∗ Email address: [email protected] 1 1. INTRODUCTION The classic Fermi Paradox can lead to the conclusion that humans have formed the first advanced civilization in the galaxy because extraterrestrial intelligence (ETI) has not yet been observed [1]. Numerous resolutions to this paradox have been proposed [2], spanning the range of cosmological limits to sociological assumptions. A popular class of solutions assumes that the evolution of life is rare in the Universe: Earth may not be wholly unique, but other inhabited planets in the Universe could be too far away for any interaction or detection [3].
    [Show full text]
  • Assembling Transformation Through Afrofuturist Imaginaries
    Future Machines: Assembling Transformation through Afrofuturist Imaginaries James Perla McLean, Virginia BA in English Literature, The University of Virginia, 2015 A Thesis presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Masters of Arts Department of English University of Virginia May 2016 ________________________________ ________________________________ ________________________________ ________________________________ Perla 1 Table of Contents 1. Rebooting Race: An Introduction to the Afrofuturist World of Signification 2 2. “It’s After the End of the World”: Assembling Identity through Future Archives 12 3. Shaping a More Practical Utopia in Parable of the Sower 31 4. Conclusion: Multidimensional Machines to the Future and Back 60 5. Appendix 66 6. Bibliography 75 Perla 2 CHAPTER 1: Rebooting Race: An Introduction to the Afrofuturist World of Signification In pop-icon Janelle Monáe’s futuristic world, race is a technology and androids dream of falling in love. Janelle Monáe’s seven-part concept album tells the story of the android Cindi Mayweather, who falls in love with a human and must go into exile to avoid punishment for her transgressive act. Escaping into the Wondaground, a zone reminiscent of the Underground Railroad, Mayweather comes to represent a revolutionary figure that preaches to other androids the liberating power of self-love, dance, and cyber-soul to free “the citizens of Metropolis from the Great Divide” (BadBoy Records, 2010).1 While she draws on Fritz Lange’s Metropolis, Monáe reframes the science fiction classic to discuss structural inequality built into the foundations of the U.S. In Lange’s 1927 film, Maria prophesizes that a mediator will come to Metropolis in order to unite the working class and wealthy elite.
    [Show full text]