Symbiosis: Rich, Exciting, Neglected Topic

Total Page:16

File Type:pdf, Size:1020Kb

Symbiosis: Rich, Exciting, Neglected Topic symbiosis: Rich, Exciting, Neglected Topic JANE THOMAS ROWLAND benefit by the association but relations are not obli- gatory; he reserves the term "mutualism"for asso- ciations in which both populationsare not only bene- fited but cannot survive under natural conditions without each other (obligate symbiosis). As early as 1876 the term "commensalism"was used by Van Beneden to describe the relationship between what he otherwise called "messmates." He states, "The messmate does not live at the expense of his host; IN ECOLOGIC STUDIES of biotic factors an approach all that he desires is a home or his friend's super- through the phenomenon of symbiosis and interde- fluities" (Van Beneden 1876:1). Downloaded from http://online.ucpress.edu/abt/article-pdf/36/2/77/31514/4444655.pdf by guest on 26 September 2021 pendence of organisms can be most meaningful and Because true parasitism is treated extensively in enlightening to the student at any educational level. many books and journals, it is assumed here that this It is my opinion that symbiosis has been greatly relation gets its due credit; so I will concentrate on neglected and underemphasized in general-biology symbiosis in a more narrow sense, which includes textbooks, as well as in much of the current ecologic various degrees of mutualism and commensalism, literature and the environmental studies that are so together with the relationship often called "social popular today. Many textbooks devote only a few parasitism." In social parasitism the symbiont does paragraphsto symbiosis, and these usually resort to not live in or on its host and does not receive its the most commonly used examples, leaving the im- nourishment from the tissues of its host. The social pression with the student that there are only these parasite exploits the host organism in other ways, few situations and that symbiosis is an exception such as stealing some of its food, using it as a slave, rather than a usual occurrence in animal behavior or seeing that it incubates its eggs and raises its and in plant-and-animalassociations. The purpose of young. "Behavioral symbiosis" is a term used to de- this article is to encourage the presentation of a scribe associations in which the contact may not be wider selection of examples to students and to show intimate or persisting but involves certain behavioral the universal principle of interdependence of spe- patterns of the organisms involved. cies, which takes on varying gradients of what can easily be categorized as symbiosis. Importance of the Study of Symbiosis Definitions of Terms The interdependence of organisms is a most out- standing principle of nature, whether it is at a micro- There is considerablecontroversy as to what should scopic level and involves nutritional exchange at the and should not be classed as symbiosis. The term tissue or cellular level or involves occasional contact symbiosis (Greek, "living together") was first pro- or behavior at the organismiclevel. No organism can posed by DeBary in 1879 to refer to organisms of exist in nature without others in its environment. two species living together. DeBary used lichens as These dependencies include the need for food, habi- a representative example of symbiosis; so it is quite tat, protection,reproduction, companionship, or other logical that the most popular usage of the term refers factors or a combination of these. The fascinating to mutually beneficial relationships. However, the aspect is how different organisms meet their needs broad meaning includes all intimate associations; in such diverse ways. It is the diversity through evo- therefore symbiosis can be divided into three main lutionary adaptation that presents the student with categories: (i) mutualism, in which each partner such a variety of unusual examples. However, one receives benefit; (ii) commensalism, in which one partner (the commensal) is benefited but the host The author is assistant professor of biology, is unaffected; and (Miii)parasitismn, in which the host Paine College, 1235 15th St, Augusta, Ga. is exploited to the benefit of the parasite (symbiont). 30901. She is a 1952 graduate of Tift College Needless to say, no distinct boundaries separate and has her M.S. from Emory University. Before joining the Paine faculty she taught these associations. This fact complicates defining and at Armstrong State College, Savannah, 1953- classifying the many associations of organisms.Inter- 56, and at Augusta College, 1961-84. She actions between species may be very complex, and frequently contributes book reviews to additional terms are applied to specific relationships. Choice, a publication of the Association of Authorities differ in their usages of such terms. College and Research Libraries. Library research of the kind reflected in this paper has been a primary interest of Odum (1971:211) uses the term "protocooperation" the author for the past 10 years. Mrs. Rowland's husband is to designate an association in which both populations the librarian of Augusta College. 77 does not have to search out the unique (however Other examples of cleaning activity include ground exciting this may be) to find examples of symbiosis. finches removing ticks from the skin of tortoises Every habitat, every community of plants and ani- (MacFarland and MacFarland 1972:632); a lark mals is well supplied with many symbionts. From pecking parasites from the back of the imouran, a the lichens on barren rocks or intestinal bacteria in large rodent of Mongolia (Pearse 1939:513); red the human body to the flowers and insects in the crabs of the Galapagos Islands eating ticks from garden, a student can witness the marvelous inter- the leathery skin of iguanas (Simon 1970:96; Feder action of species. 1966:329); a pseudoscorpion cleaning a lizard (Feder In this day, when molecular biology is so popular, 1966:329); mites cleaning dung deposits from the there has been a definite decrease in interest in cer- body of a dung beetle (Burton 1969:52); pseudo- tain aspects of natural history. This has occurred in scorpions removing mites from long-horned beetles spite of the soaring interest in environmental biology (Dudley 1965:49; Simon 1970: 80-83); and barber and is evidenced by a relative decline in the amount ants grooming their host ants (Simon 1970:83). of information published on symbiosis, except in Many commensal organisms live in the nests or microbiology (nitrogen fixation and the like). Be- burrows of their hosts and are cleaners or scaven- havioral symbiosis, such as is evidenced in birds gers, removing unwanted scraps of food, parasites, and in insects, was a popular topic in many works and excrement. The clownfish, in addition to its pro- published about 1900-1950. Some of the most thor- tective association with anemones (mentioned be- Downloaded from http://online.ucpress.edu/abt/article-pdf/36/2/77/31514/4444655.pdf by guest on 26 September 2021 ough works are now quite dated, and there are low), has been observed grooming the tentacles of relatively few books in print that deal exclusively the anemone. with symbiosis. The whole organism and its relation to its environment should still receive attention. Beater Associations Fortunately, there are periodicals that still deal with A beater, or driver, is an animal that disturbs the natural history of organisms, including the biotic small creatures as it moves about; and other animals, factors of environment; among these are Natural such as insectivorous birds, prey upon the animals History, Audubon Magazine, and Animals. flushed. Rand (1954) cites descriptions of a number of such relationships. A common example is the asso- Symbiosis Takes Many Forms ciation of cattle egrets with large herbivorous mam- mals (Peterson 1954). The carmine bee-eater uses Because there are so many types of symbiosis and the kori bustard as its beater; and, as is the case such a large number of close interdependencies of with many of these symbionts, it often rides on the different species, this paper will emphasize only five back of the beater, frequently jumping off to capture categories, which can serve to show the wide hetero- insects (Rand 1954). Pompadoured hornbills, or specific situations represented. These categories are monkeybirds, in Africa associate with guenon mon- cleaning symbiosis, beater associations, pollination keys, feeding on the insects made more easily avail- symbiosis, symbiosis for shelter or protection, and able to them (Burton 1969:36; Simon 1970:31). One social parasitism. species of African hornbill follows driver-ant col- umns, before which small animals are fleeing (Simon Cleaning Symbiosis 1970:32). Other birds also associate with driver ants In the study of symbiosis many aspects of animal for this purpose; for example, the antbirds (Willis behavior are observed. Cleaning symbiosis, for ex- 1973). Welty (1962:380) says the rough-legged hawk ample, involves a wide variety of organisms. "Clean- follows the Arctic fox, to feed on the mice it stirs up. ing symbiosis is defined as a relationship during In the U.S. we often see cattle accompanied by cow- which certain organisms, known as cleaners, remove birds, which gain from the association by the greater ectoparasites, bacteria, diseased and injured tissues, number of insects they are able to catch. and unwanted food particles from cooperating hosts" (Cheng 1970:26). This has been studied most thor- Pollination Symbiosis oughly in marine organisms (Limbaugh 1961; Feder Interdependence of plants and animals becomes 1966). Certain cleaner organisms, such as fish and most interesting and varied with pollination ecology. shrimp, set up cleaning stations and have an eager Whenever a plant is dependent upon a biotic agent clientele of fishes waiting to be cleaned of parasites, for its pollination, this approximates symbiosis. Some diseased tissue, and debris. The host is benefited, plants, however, have developed such great specific- and the cleaner is rewarded with a meal of the clean- ity in the methods of pollen transfer that they and ings.
Recommended publications
  • Plant-Microbe Symbioses: a Continuum from Commensalism to Parasitism
    UCLA UCLA Previously Published Works Title Plant-microbe symbioses: A continuum from commensalism to parasitism Permalink https://escholarship.org/uc/item/6kx779h1 Journal Symbiosis, 37(1-3) ISSN 0334-5114 Author Hirsch, Ann M. Publication Date 2004 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Symbiosis, 37 (2004) xx–xx 1 Balaban, Philadelphia/Rehovot Review article. Plant-Microbe Symbioses: A Continuum from Commensalism to Parasitism ANN M. HIRSCH Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA, Tel. +1-310-206-8673, Fax. +1-310-206-5413, Email. [email protected] Received October 28, 2003; Accepted January 27, 2004 Abstract Photosynthetic organisms establish symbioses with a wide range of microorganisms. This review examines the diversity of symbiotic interactions, and proposes that there is a continuum from commensalism to mutualism to pathogenesis/parasitism in plant-microbe associations. The advantage of considering commensalism, mutualism, and pathogenesis/parasitism as a continuum rather than as discrete relationships between hosts and microbes, as they have been considered in the past, is that it will motivate us to focus more on common molecular mechanisms. Keywords: ?? 1. Introduction Plants establish mutualistic, often described as symbiotic, interactions with myriad organisms, both prokaryotic and eukaryotic. Some of the most prominent photosynthetic mutualisms are illustrated in Fig. 1. Although technically not a plant symbiosis, lichens are photosynthetic and represent an excellent example of a beneficial interaction (Fig. 1A). Presented at the 4th International Symbiosis Congress, August 17–23, 2003, Halifax, Canada 0334-5114/2004/$05.50 ©2004 Balaban 2 A.M.
    [Show full text]
  • Coming to Terms with a Field: Words and Concepts in Symbiosis
    Symbiosis, 14 (1992) 17-31 17 Balaban, Philadelphia/Rehovot Review article Coming to Terms with a Field: Words and Concepts in Symbiosis MARY BETH SAFFO Institute of Marine Sciences, University of California Santa Cruz, CA 95064, USA Tel. ( 408) 459 4997, Fax ( 408) 459 4882 Received March 29, 1992; Accepted May 5, 1992 Abstract More than a century after de Bary (1879) adopted the term symbiosis, biolo• gists still disagree about the word's meaning. Many researchers define symbiosis in the sense of de Bary, as an intimate, outcome-independent interaction between species; others use symbiosis as a synonym for mutualistic or non-parasitic as• sociations. This varied usage arises in part from the absence of a language for describing both symbiotic and non-symbiotic mutualistic interactions; the complexity of many "mutualistic" endosymbiosesposes a particular descriptive difficulty. Expropriation of "symbiosis" to identify these mutualistic associa• tions is an understandable, but ultimately confusing, and conceptually limiting solution to this problem. Retention of the broad, outcome-independent sense of symbiosis is urged. Alternate terms, including chronic endosymbiosis, are proposed for apparently benign symbioses which are too poorly known, or too complex, to categorize comfortably as "mutualistic." In addition to outcome-independent investigations of symbiotic phenomena, questions of the evolutionary significance of symbioses are difficult, but im• portant problems. Thus, terms which address particular outcomes for host or symbiont - e.g., parasitism, commensalism and mutualism, "costs," "bene• fits," fitness, and related terms - also have a place in the language of symbiosis research. 0334-5114/92 /$03.50 ©1992 Balaban 18 M.B. SAFFO Habits of language ..
    [Show full text]
  • The Symbiotic Life of Symbiodinium in the Open Ocean Within a New Species of Calcifying Ciliate (Tiarina Sp.)
    The ISME Journal (2016) 10, 1424–1436 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.) Solenn Mordret1,2,5, Sarah Romac1,2, Nicolas Henry1,2, Sébastien Colin1,2, Margaux Carmichael1,2, Cédric Berney1,2, Stéphane Audic1,2, Daniel J Richter1,2, Xavier Pochon3,4, Colomban de Vargas1,2 and Johan Decelle1,2,6 1EPEP—Evolution des Protistes et des Ecosystèmes Pélagiques—team, Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 2CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 3Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand and 4Institute of Marine Science, University of Auckland, Auckland, New Zealand Symbiotic partnerships between heterotrophic hosts and intracellular microalgae are common in tropical and subtropical oligotrophic waters of benthic and pelagic marine habitats. The iconic example is the photosynthetic dinoflagellate genus Symbiodinium that establishes mutualistic symbioses with a wide diversity of benthic hosts, sustaining highly biodiverse reef ecosystems worldwide. Paradoxically, although various species of photosynthetic dinoflagellates are prevalent eukaryotic symbionts in pelagic waters, Symbiodinium has not yet been reported in symbiosis within oceanic plankton, despite its high propensity for the symbiotic lifestyle. Here we report a new pelagic photosymbiosis between a calcifying ciliate host and the microalga Symbiodinium in surface ocean waters. Confocal and scanning electron microscopy, together with an 18S rDNA-based phylogeny, showed that the host is a new ciliate species closely related to Tiarina fusus (Colepidae).
    [Show full text]
  • Symbiosis: Living Together
    Biology Symbiosis: Living together When different species live together in close contact, they can interact with each other in a number of different ways. In this lesson you will investigate the following: • What are the types of symbiosis? • What is parasitism? • What are the different types of parasite-host relationships? • What’s it like to be a parasite? So let’s get stuck in and start sucking the life out of this lesson! This is a print version of an interactive online lesson. To sign up for the real thing or for curriculum details about the lesson go to www.cosmosforschools.com Introduction: Symbiosis (P1) Cuckoos are known for not building their own nests. Instead these birds let someone else do all the work to build a nest, then lay their eggs there. They don’t even wait around to bring up their chicks when they hatch – they let the other birds do that too. Scientists have just discovered how they have been getting away with this for so long. While having an extra mouth to feed is a burden, it seems the cuckoos do provide something useful in exchange. While studying crows’ breeding habits in Spain, scientists saw lots of cuckoos laying eggs in crows’ nests and magpies’ nests. The magpies fought back and threw out the cuckoo eggs (if they noticed them). But the crows allowed the eggs to stay, letting them hatch and then feeding the cuckoo chicks as they grew. Curious, the scientists investigated, taking note of how well the crows with cuckoos did compared to crows without a cuckoo tenant.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Slime Molds: Biology and Diversity
    Glime, J. M. 2019. Slime Molds: Biology and Diversity. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 3-1-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SLIME MOLDS: BIOLOGY AND DIVERSITY TABLE OF CONTENTS What are Slime Molds? ....................................................................................................................................... 3-1-2 Identification Difficulties ...................................................................................................................................... 3-1- Reproduction and Colonization ........................................................................................................................... 3-1-5 General Life Cycle ....................................................................................................................................... 3-1-6 Seasonal Changes ......................................................................................................................................... 3-1-7 Environmental Stimuli ............................................................................................................................... 3-1-13 Light .................................................................................................................................................... 3-1-13 pH and Volatile Substances
    [Show full text]
  • The Ecology of Mutualism
    Annual Reviews www.annualreviews.org/aronline AngRev. Ecol. Syst. 1982.13:315--47 Copyright©1982 by Annual Reviews lnc. All rightsreserved THE ECOLOGY OF MUTUALISM Douglas 1t. Boucher Departementdes sciences biologiques, Universit~ du Quebec~ Montreal, C. P. 8888, Suet. A, Montreal, Quebec, CanadaH3C 3P8 Sam James Departmentof Ecologyand Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA48109 Kathleen H. Keeler School of Life Sciences, University of Nebraska,Lincoln, Nebraska,USA 68588 INTRODUCTION Elementaryecology texts tell us that organismsinteract in three fundamen- tal ways, generally given the namescompetition, predation, and mutualism. The third memberhas gotten short shrift (264), and even its nameis not generally agreed on. Terms that may be considered synonyms,in whole or part, are symbiosis, commensalism,cooperation, protocooperation, mutual aid, facilitation, reciprocal altruism, and entraide. Weuse the term mutual- by University of Kanas-Lawrence & Edwards on 09/26/05. For personal use only. ism, defined as "an interaction betweenspecies that is beneficial to both," Annu. Rev. Ecol. Syst. 1982.13:315-347. Downloaded from arjournals.annualreviews.org since it has both historical priority (311) and general currency. Symbiosis is "the living together of two organismsin close association," and modifiers are used to specify dependenceon the interaction (facultative or obligate) and the range of species that can take part (oligophilic or polyphilic). We make the normal apologies concerning forcing continuous variation and diverse interactions into simple dichotomousclassifications, for these and all subsequentdefinitions. Thus mutualism can be defined, in brief, as a -b/q- interaction, while competition, predation, and eommensalismare respectively -/-, -/q-, and -t-/0. There remains, however,the question of howto define "benefit to the 315 0066-4162/82/1120-0315 $02.00 Annual Reviews www.annualreviews.org/aronline 316 BOUCHER, JAMES & KEELER species" without evoking group selection.
    [Show full text]
  • Microbial Interactions Lecture 2
    Environmental Microbiology CLS 416 Lecture 2 Microbial interactions Sarah Alharbi Clinical laboratory department Collage of applied medical sciences King Saud University Outline • Important terms (Symbiosis,ectosymbiont.Endosymbiont, ecto/endosymbiosis • Positive interactions (mutualism, protocooperation, commensalism) • Negative interactions(predation, parasitism, amensalism,and competition) • Nutrient Cycling Interactions • The importance of understanding the principle of microbial interactions (Examples from the literature) Microbial interactions Symbiosis An association of two or more different species Ectosymbisis One organism can be located on the surface of another, as an ectosymbiont. In this case, the ectosymbiont usually is a smaller organism located on the surface of a larger organism. Endosymbiosis one organism can be located within another organism as an endosymbiont Ecto/ endosymbiosis. microorganisms live on both the inside and the outside of another organism - Examples (Ecto/ endosymbiosis) 1- Thiothrix species, a sulfur-using bacterium, which is at- ached to the surface of a mayfly larva and which itself contains a parasitic bacterium. 2- Fungi associated with plant roots (mycorrhizal fungi) often contain endosymbiotic bacteria, as well as having bacteria living on their surfaces • Symbiotic relationships can be intermittent and cyclic or permanent • Symbiotic interactions do not occur independently. Each time a microorganism interacts with other organisms and their environments, a series of feedback responses occurs in the larger biotic community that will impact other parts of ecosystems. Microbial interactions Positive interactions •Mutualism •Protocooperation •Commensalism Negative interactions • Predation • Parasitism • Amensalism • Competition Mutualism Mutualism [Latin mutuus, borrowed or reciprocal] defines the relationship in which some reciprocal benefit accrues to both partners. • Relationship with some degree of obligation • partners cannot live separately • Mutualist and host are dependent on each other 6 Examples of Mutalism 1.
    [Show full text]
  • Symbiosis in the Microbial World: from Ecology to Genome Evolution Jean-Baptiste Raina1,*, Laura Eme2, F
    © 2018. Published by The Company of Biologists Ltd | Biology Open (2018) 7, bio032524. doi:10.1242/bio.032524 REVIEW Symbiosis in the microbial world: from ecology to genome evolution Jean-Baptiste Raina1,*, Laura Eme2, F. Joseph Pollock3, Anja Spang2,4, John M. Archibald5 and Tom A. Williams6,* ABSTRACT functionally diverse organisms on the planet, the microbes The concept of symbiosis – defined in 1879 by de Bary as ‘the living (which comprise bacteria, archaea and protists, as well as the together of unlike organisms’–has a rich and convoluted history in viruses that infect them), and their interactions with multicellular biology. In part, because it questioned the concept of the individual, hosts. These microbial symbioses range from metabolic symbiosis fell largely outside mainstream science and has (McCutcheon and Moran, 2012) and defensive interactions traditionally received less attention than other research disciplines. (Oliver et al., 2014) among free-living organisms, to the This is gradually changing. In nature organisms do not live in isolation complete cellular and genomic integration that occurred during but rather interact with, and are impacted by, diverse beings the endosymbiotic origins of mitochondria and chloroplasts in throughout their life histories. Symbiosis is now recognized as a eukaryotic cells (Embley and Martin, 2006; Roger et al., 2017). central driver of evolution across the entire tree of life, including, for Symbiosis provides an unparalleled route to evolutionary example, bacterial endosymbionts that provide insects with vital innovation, one that underlies some of the most important nutrients and the mitochondria that power our own cells. Symbioses transitions in the history of life.
    [Show full text]
  • Plant Ecology and Biostatistics
    BSCBO- 203 B.Sc. II YEAR Plant Ecology and Biostatistics DEPARTMENT OF BOTANY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 BSCBO-203 PLANT ECOLOGY AND BIOSTATISTICS SCHOOL OF SCIENCES DEPARTMENT OF BOTANY UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in UTTARAKHAND OPEN UNIVERSITY Page 1 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Expert Committee Prof. J. C. Ghildiyal Prof. G.S. Rajwar Retired Principal Principal Government PG College Government PG College Karnprayag Augustmuni Prof. Lalit Tewari Dr. Hemant Kandpal Department of Botany School of Health Science DSB Campus, Uttarakhand Open University Kumaun University, Nainital Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Board of Studies Late Prof. S. C. Tewari Prof. Uma Palni Department of Botany Department of Botany HNB Garhwal University, Retired, DSB Campus, Srinagar Kumoun University, Nainital Dr. R.S. Rawal Dr. H.C. Joshi Scientist, GB Pant National Institute of Department of Environmental Science Himalayan Environment & Sustainable School of Sciences Development, Almora Uttarakhand Open University, Haldwani Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani Programme Coordinator Dr. Pooja Juyal Department of Botany School of Sciences Uttarakhand Open University, Haldwani UTTARAKHAND OPEN UNIVERSITY Page 2 PLANT ECOLOGY AND BIOSTATISTICS BSCBO-203 Unit Written By: Unit No. 1-Dr. Pooja Juyal 1, 4 & 5 Department of Botany School of Sciences Uttarakhand Open University Haldwani, Nainital 2-Dr. Harsh Bodh Paliwal 2 & 3 Asst Prof. (Senior Grade) School of Forestry & Environment SHIATS Deemed University, Naini, Allahabad 3-Dr.
    [Show full text]
  • Simply Symbiosis! Symbiotic Relationships
    (circle) Name: _______________________________________ Period : 1 4 5 6 7 Simply Symbiosis! Background The word symbiosis was first defined as “unlike organisms living together”. The relationship between these two unlike organisms can be positive, negative or neutral. There are three types of symbiotic relationships- mutualism, commensalism and parasitism. Mutualism is when both organisms benefit from each other like the African crocodile and the blackbird plover- the bird gets nutrients from left over food material in the mouth of the crocodile and the crocodile has cleaner teeth because of the bird. Commensalism is when one organism benefits from the relationship, while the other one is neither helped nor harmed. An example of commensalism is a barnacle on a whale. The barnacle gets protection and transportation to different food sources while the whale is neither helped nor harmed by the presence of the barnacle. The last example of symbiosis is parasitism. This is when one organism benefits but while doing so it is harming the other member in the relationship. A common example of this is a flea on a dog. The flea obtains nutrients and protection from the dog but the dog has an uncomfortable skin reaction because of the flea. Pre Lab Assignment Complete the concept map about symbiotic relationships using the word bank below. One benefits/One is harmed Both benefit Parasitism One benefits/One not helped nor harmed Mutualism Commensalism Symbiotic Relationships Skills Applications Concepts pg. 1 Lab Assignment Read and complete each step of the lab below. 1. Purpose: The purpose of this lab is to determine the type of symbiotic relationships between two unlike organisms found in nature.
    [Show full text]
  • Ecology Second Edition
    Ecology Second Edition N.S. Subrahmanyam A.V.S.S. Sambamurty Alpha Science International Ltd. Oxford, U.K. Contents Preface to the Second Edition vii Preface to the First Edition " ix 1. Ecology and Environment 1.1-1.20 1.1 Introduction 1.1 Branches of Ecology 1.2 Importancy of Ecology 1.2 1.2 History 1.2 1.3 Ecological Principles 1.3 Indian Ecology 1.4 1.4 Structural Concepts (Descriptive Ecology) 1.4 1.5 Functional Concepts 1.5' 1.6 Evolutionary Concepts 1.5 ° 1.7 Environmental Biotechnology 1.6 1.8 Atmosphere 1.12 2. Ecological Factors: Light and Temperature 2.1-2.28 2.1 Light 2.1 Quality of Light 2.1- Ultraviolet Light 2.2 Light in Aquatic Habitat 2.2 Effects of Light on the Plants 2.3 2.2 Transpiration 2.5 Light Absorption by Chlorophyll 2.5 Stomatal Movement 2.6 Photomorphogenesis 2.6 Phytochrome System 2.6 2.3 Phototropism 2.7 2.4 Photoperiodism 2.8 2.5 Vernalization 2.9 2.6 Bunning Hypothesis 2.10 Germination of Seeds 2.10 2.7 Measurement of Light Intensity 2.10 2.8 Light and Animals 2.11 Photoperiodism in Insects 2.11 Diapause 2.12 Seasonal Development 2.12 xii Contents 2.9 Circadian Rhythms 2.13 Behaviour Responses in Animals 2.13 2.10 Diurnation 2.14 2.11 Bioluminiscence 2.15 Types of Bioluminiscence 2.16 2.12 Temperature and Plants 2.17 2.13 Effects of Altitude 2.20 Temperature and Seed Germination 2.21 Temperature and Plant Reproduction 2.23 2.14 Thermal Constant 2.23 Thermal Stratification in Aquatic Ecosystems 2.24 2.15 Chemical Stratification 2.24 Temperature and Animals 2.25 Effect of Higher and Lower Temperatures 2.25 2.16 Temperature and Metabolism 2.25 2.17 Temperature and Reproduction 2.26 2.18 Temperature and Animal Behaviour 2.27 3.
    [Show full text]