Lesson Plans for Go in Schools

Total Page:16

File Type:pdf, Size:1020Kb

Lesson Plans for Go in Schools Go Lesson Plans 1 Lesson Plans for Go in Schools By Gordon E. Castanza, Ed. D. October 19, 2011 Published By Rittenberg Consulting Group 7806 108th St. NW Gig Harbor, WA 98332 253-853-4831 ©Gordon E. Castanza, Ed. D. 10/19/11 DRAFT Go Lesson Plans 2 Table of Contents Acknowledgements ......................................................................................................................... 4 Purpose/Rationale ........................................................................................................................... 5 Lesson Plan One ............................................................................................................................. 7 Basic Ideas .................................................................................................................................. 7 Introduction ............................................................................................................................... 11 The Puzzle ................................................................................................................................. 13 Surround to Capture .................................................................................................................. 14 First Capture Go ........................................................................................................................ 16 Lesson Plan Two ........................................................................................................................... 19 Units & Liberties....................................................................................................................... 19 Lesson Plan Three ......................................................................................................................... 24 Capture ...................................................................................................................................... 24 Examples for counting liberties ................................................................................................ 26 Where You Can't Play - Suicide Moves ............................................................................... 28 Recognizing Atari ................................................................................................................. 28 Lesson Plan Four........................................................................................................................... 31 Eyes ........................................................................................................................................... 31 Three-point eye-space ........................................................................................................... 36 Four-point eye space in a line ............................................................................................... 37 Four-point eye-space in a square .......................................................................................... 37 Four-point eye shape in an ―L‖ ............................................................................................. 37 Five-point eye-space ............................................................................................................. 38 Complete six-point eye space ............................................................................................... 38 The unsafe six-point complete eye-space shape (―Rabbit‘s Head‖) ..................................... 38 Unconnected six-point eye-space ......................................................................................... 39 Lesson Plan Five ........................................................................................................................... 40 Seki ........................................................................................................................................... 40 Seki Form 1 ........................................................................................................................... 42 Seki Form 2 ........................................................................................................................... 43 Seki Form 3 ........................................................................................................................... 43 Seki for guided practice ........................................................................................................ 44 Lesson Plan Six ............................................................................................................................. 46 ―No Repetition‖ Rule ................................................................................................................ 46 Three forms of ko.................................................................................................................. 48 Don‘t be afraid of ko ............................................................................................................. 50 Ko threats .............................................................................................................................. 53 Lesson Plan Seven ........................................................................................................................ 56 Territory .................................................................................................................................... 56 Lesson Plan Eight ......................................................................................................................... 63 Influence ................................................................................................................................... 63 Lesson Plan Nine .......................................................................................................................... 68 Scoring ...................................................................................................................................... 68 Lesson Plan 10 .............................................................................................................................. 76 Extensions, Connections, Cuts—Part One................................................................................ 76 Lesson Plan 11 .............................................................................................................................. 83 ©Gordon E. Castanza, Ed. D. 10/19/11 DRAFT Go Lesson Plans 3 Lesson Plan 11 .............................................................................................................................. 83 Extensions, Connections, Cuts—Part Two ............................................................................... 83 Lesson Plan 12 .............................................................................................................................. 95 Lesson Plan 12 .............................................................................................................................. 95 Basic Opening Strategy............................................................................................................. 95 Lesson Plan 13 ............................................................................................................................ 108 Endgame ................................................................................................................................. 108 Lesson Plan 14 ............................................................................................................................ 117 Planning .................................................................................................................................. 117 Lesson Plan 15 ............................................................................................................................ 125 Fighting ................................................................................................................................... 125 Lesson Plan 16 ............................................................................................................................ 131 Connecting to the Go World ................................................................................................... 131 References ................................................................................................................................... 137 References ................................................................................................................................... 137 ©Gordon E. Castanza, Ed. D. 10/19/11 DRAFT Go Lesson Plans 4 Acknowledgements I wish to extend my appreciation to the seminal work of Ralph Tyler (Tyler, 1949) for providing the foundation for curriculum design in the form of his four fundamental questions known as the ―Tyler Rationale‖: ―What educational purposes should the school seek to have? What educational experiences will lead to fulfilling these purposes? How can these educational experiences be effectively organized? [And] how can we determine whether these purposes are met‖ (Kridel, May 2000)? Tyler‘s work gave educators the structure for the nascent field of curriculum development. Allan C. Ornstein and Francis Hunkins (Ornstein, 1993) informed my understanding of the instructional theories and instructional models of David Berliner, Benjamin Bloom, Jere Brophy, Walter Doyle, Nate Gage, Thomas Good, Carolyn Evertson, Herb Walberg, Barak Rosenshine, and Madeline
Recommended publications
  • GO WINDS Play Over 1000 Professional Games to Reach Recent Sets Have Focused on "How the Pros 1-Dan, It Is Said
    NEW FROM YUTOPIAN ENTERPRISES GO GAMES ON DISK (GOGoD) SOFTWARE GO WINDS Play over 1000 professional games to reach Recent sets have focused on "How the pros 1-dan, it is said. How about 6-dan? Games of play the ...". So far there are sets covering the Go on Disk now offers over 6000 professional "Chinese Fuseki" Volume I (a second volume Volume 2 Number 4 Winter 1999 $3.00 games on disk, games that span the gamut of is in preparation), and "Nirensei", Volumes I go history - featuring players that helped and II. A "Sanrensei" volume is also in define the history. preparation. All these disks typically contain All game collections come with DOS or 300 games. Windows 95 viewing software, and most The latest addition to this series is a collections include the celebrated Go Scorer in "specialty" item - so special GoGoD invented which you can guess the pros' moves as you a new term for it. It is the "Sideways Chinese" play (with hints if necessary) and check your fuseki, which incorporates the Mini-Chinese score. pattern. Very rarely seen in western The star of the collection may well be "Go publications yet played by most of the top Seigen" - the lifetime games (over 800) of pros, this opening is illustrated by over 130 perhaps the century's greatest player, with games from Japan, China and Korea. Over more than 10% commented. "Kitani" 1000 half have brief comments. The next specialty makes an ideal matching set - most of the item in preparation is a set of games featuring lifetime games of his legendary rival, Kitani unusual fusekis - this will include rare New Minoru.
    [Show full text]
  • Curriculum Guide for Go in Schools
    Curriculum Guide 1 Curriculum Guide for Go In Schools by Gordon E. Castanza, Ed. D. October 19, 2011 Published By: Rittenberg Consulting Group 7806 108th St. NW Gig Harbor, WA 98332 253-853-4831 © 2005 by Gordon E. Castanza, Ed. D. Curriculum Guide 2 Table of Contents Acknowledgements ......................................................................................................................... 4 Purpose and Rationale..................................................................................................................... 5 About this curriculum guide ................................................................................................... 7 Introduction ..................................................................................................................................... 8 Overview ................................................................................................................................. 9 Building Go Instructor Capacity ........................................................................................... 10 Developing Relationships and Communicating with the Community ................................. 10 Using Resources Effectively ................................................................................................. 11 Conclusion ............................................................................................................................ 11 Major Trends and Issues ..........................................................................................................
    [Show full text]
  • Learning to Play the Game of Go
    Learning to Play the Game of Go James Foulds October 17, 2006 Abstract The problem of creating a successful artificial intelligence game playing program for the game of Go represents an important milestone in the history of computer science, and provides an interesting domain for the development of both new and existing problem-solving methods. In particular, the problem of Go can be used as a benchmark for machine learning techniques. Most commercial Go playing programs use rule-based expert systems, re- lying heavily on manually entered domain knowledge. Due to the complexity of strategy possible in the game, these programs can only play at an amateur level of skill. A more recent approach is to apply machine learning to the prob- lem. Machine learning-based Go playing systems are currently weaker than the rule-based programs, but this is still an active area of research. This project compares the performance of an extensive set of supervised machine learning algorithms in the context of learning from a set of features generated from the common fate graph – a graph representation of a Go playing board. The method is applied to a collection of life-and-death problems and to 9 × 9 games, using a variety of learning algorithms. A comparative study is performed to determine the effectiveness of each learning algorithm in this context. Contents 1 Introduction 4 2 Background 4 2.1 Go................................... 4 2.1.1 DescriptionoftheGame. 5 2.1.2 TheHistoryofGo ...................... 6 2.1.3 Elementary Strategy . 7 2.1.4 Player Rankings and Handicaps . 7 2.1.5 Tsumego ..........................
    [Show full text]
  • Computer Go: an AI Oriented Survey
    Computer Go: an AI Oriented Survey Bruno Bouzy Université Paris 5, UFR de mathématiques et d'informatique, C.R.I.P.5, 45, rue des Saints-Pères 75270 Paris Cedex 06 France tel: (33) (0)1 44 55 35 58, fax: (33) (0)1 44 55 35 35 e-mail: [email protected] http://www.math-info.univ-paris5.fr/~bouzy/ Tristan Cazenave Université Paris 8, Département Informatique, Laboratoire IA 2, rue de la Liberté 93526 Saint-Denis Cedex France e-mail: [email protected] http://www.ai.univ-paris8.fr/~cazenave/ Abstract Since the beginning of AI, mind games have been studied as relevant application fields. Nowadays, some programs are better than human players in most classical games. Their results highlight the efficiency of AI methods that are now quite standard. Such methods are very useful to Go programs, but they do not enable a strong Go program to be built. The problems related to Computer Go require new AI problem solving methods. Given the great number of problems and the diversity of possible solutions, Computer Go is an attractive research domain for AI. Prospective methods of programming the game of Go will probably be of interest in other domains as well. The goal of this paper is to present Computer Go by showing the links between existing studies on Computer Go and different AI related domains: evaluation function, heuristic search, machine learning, automatic knowledge generation, mathematical morphology and cognitive science. In addition, this paper describes both the practical aspects of Go programming, such as program optimization, and various theoretical aspects such as combinatorial game theory, mathematical morphology, and Monte- Carlo methods.
    [Show full text]
  • Go Books Detail
    Evanston Go Club Ian Feldman Lending Library A Compendium of Trick Plays Nihon Ki-in In this unique anthology, the reader will find the subject of trick plays in the game of go dealt with in a thorough manner. Practically anything one could wish to know about the subject is examined from multiple perpectives in this remarkable volume. Vital points in common patterns, skillful finesse (tesuji) and ordinary matters of good technique are discussed, as well as the pitfalls that are concealed in seemingly innocuous positions. This is a gem of a handbook that belongs on the bookshelf of every go player. Chapter 1 was written by Ishida Yoshio, former Meijin-Honinbo, who intimates that if "joseki can be said to be the highway, trick plays may be called a back alley. When one masters the alleyways, one is on course to master joseki." Thirty-five model trick plays are presented in this chapter, #204 and exhaustively analyzed in the style of a dictionary. Kageyama Toshiro 7 dan, one of the most popular go writers, examines the subject in Chapter 2 from the standpoint of full board strategy. Chapter 3 is written by Mihori Sho, who collaborated with Sakata Eio to produce Killer of Go. Anecdotes from the history of go, famous sayings by Sun Tzu on the Art of Warfare and contemporary examples of trickery are woven together to produce an entertaining dialogue. The final chapter presents twenty-five problems for the reader to solve, using the knowledge gained in the preceding sections. Do not be surprised to find unexpected booby traps lurking here also.
    [Show full text]
  • Table of Contents
    Jay Burmeister Janet Wiles Departments of Computer Science and Psychology The University of Queensland, QLD 4072, Australia Technical Report 339, Department of Computer Science, The University of Queensland, 1995 (This document is - permanently - under construction). See also: Jay Burmeister’s PhD Thesis (2000) Table of Contents 1.0 Introduction 2.0 The Game of Go 2.1 Liberties and Capture 2.1.1 Suicide 2.2 Strings 2.3 Eyes 2.3.1 Dead or Alive 2.3.2 False Eyes 2.3.3 Seki 2.4 Repetition of Board Positions - Ko 2.5 Sente and Gote 2.6 Ladders 2.6.1 Snapbacks 2.7 Links 2.8 Groups 2.9 Armies 2.10 Winning the Game 2.11 The Go Handicap and Ranking System 3.0 The Challenge of Programming Go 3.1 A Comparison of Chess and Go 3.2 The Complexity of Go 3.3 Why Go Cannot be Programmed Like Chess 4.0 History of the Computer Go Field 4.1 Academic Work 4.1.1 Zobrist 4.1.2 Ryder 4.1.3 Reitman and Wilcox 4.1.4 Other Academic Work 4.2 Programs 4.2.1 The Many Faces of Go 4.2.1.1 G2 4.2.1.2 Cosmos 4.2.1.3 Many Faces of Go 4.2.2 Go4++ 4.2.2.1 Candidate Move Generation 4.2.2.2 Evaluation Function 4.2.2.3 Performance and Timeline 4.2.3 Handtalk 4.3 Computer Go Competitions 4.3.1 The Ing Prize 5.0 What's in a Go Program? 6.0 Performance of Current Programs 6.1 Program versus Program Performance 6.2 Program versus Human Performance 7.0 Future Improvements in Performance 8.0 Go and Computer Go Resources on the Internet 8.1 Computer Go related Internet Resources 8.1.1 Anonymous FTP Archive and Mirror Sites 8.1.2 The Internet Go Server (IGS) 8.1.3 Game Record Formats
    [Show full text]
  • The Way to Go Is a Copyrighted Work
    E R I C M A N A G F O O N How to U I O N D A T www.usgo.org www.agfgo.org play the Asian game of Go The Way to by Karl Baker American Go Association Box 397 Old Chelsea Station New York, NY 10113 GO Legal Note: The Way To Go is a copyrighted work. Permission is granted to make complete copies for personal use. Copies may be distributed freely to others either in print or electronic form, provided no fee is charged for distribution and all copies contain this copyright notice. The Way to Go by Karl Baker American Go Association Box 397 Old Chelsea Station New York, NY 10113 http://www.usgo.org Cover print: Two Immortals and the Woodcutter A watercolor by Seikan. Date unknown. How to play A scene from the Ranka tale: Immortals playing go as the the ancient/modern woodcutter looks on. From Japanese Prints and the World of Go by William Pinckard at: Asian Game of Go http://www.kiseido.com/printss/cover.htm Dedicated to Ann All in good time there will come a climax which will lift one to the heights, but first a foundation must be laid, INSPIRED BY HUNDREDS broad, deep and solid... OF BAFFLED STUDENTS Winfred Ernest Garrison © Copyright 1986, 2008 Preface American Go Association The game of GO is the essence of simplicity and the ultimate in complexity all at the same time. It is taught earnestly at military officer training schools in the Orient, as an exercise in military strategy.
    [Show full text]
  • Applying Data Mining to the Study of Joseki
    Applying Data Mining to the Study of Joseki Michiel Helvensteijn Abstract Go is a strategic two player boardgame. Many studies have been done with regard to go in general, and to joseki, localized exchanges of stones that are considered fair for both players. We give an algorithm that finds and catalogues as many joseki as it can, as well as the global circumstances under which they are likely to be played, by analyzing a large number of professional go games. The method used applies several concepts, e.g., prefix trees, to extract knowledge from the vast amount of data. 1 Introduction Go is a strategic two player game, played on a 19 × 19 board. For the rules we refer to [7]. Many studies have been done with regard to go in general, cf. [6, 8], and to joseki, localized exchanges of stones that are considered fair for both players. We will give an algorithm that finds and catalogues as many joseki as it can, as well as the global circumstances under which they are likely to be played, by analyzing a large number of professional go games. The algorithm is able to acquire knowledge out of several complex examples of professional game play. As such, it can be seen as data mining [10], and more in particular sequence mining, e.g., [1]. The use of prefix trees in combination with board positions seems to have a lot of potential for the game of go. In Section 2 we explain what joseki are and how we plan to find them. Section 3 will explain the algorithm in more detail using an example game from a well-known database [2].
    [Show full text]
  • Eyespace Values in Go
    Games of No Chance MSRI Publications Volume 29, 1996 Eyespace Values in Go HOWARD A. LANDMAN Abstract. Most of the application of combinatorial game theory to Go has been focussed on late endgame situations and scoring. However, it is also possible to apply it to any other aspect of the game that involves counting. In particular, life-and-death situations often involve counting eyes. Assuming all surrounding groups are alive, a group that has two or more eyes is alive, and a group that has one eye or less is dead. This naturally raises the question of which game-theoretical values can occur for an eyemaking game. We define games that provide a theoretical framework in which this question can be asked precisely, and then give the known results to date. For the single-group case, eyespace values include 0, R R R R R 1 1 3 1 1, 2, 2 , 1 2 , 4 , 1 4 , 1 ,andseveralko-relatedloopygames,aswell ∗ R 1 as some seki-related values. The 2 eye is well-understood in traditional R R R R 1 3 1 Go theory, and 1 2 only a little less so, but 4 , 1 4 ,and 1 may be new discoveries, even though they occur frequently in actual games.∗ For a battle between two or more opposed groups, the theory gets more complicated. 1. Go 1.1. Rules of Go. Go is played on a square grid with Black and White stones. The players alternate turns placing a stone on an unoccupied intersection. Once placed, a stone does not move, although it may sometimes be captured and removed from the board.
    [Show full text]
  • Move Prediction in the Game of Go
    Move Prediction in the Game of Go A Thesis presented by Brett Alexander Harrison to Computer Science in partial fulfillment of the honors requirements for the degree of Bachelor of Arts Harvard College Cambridge, Massachusetts April 1, 2010 Abstract As a direct result of artificial intelligence research, computers are now expert players in a variety of popular games, including Checkers, Chess, Othello (Reversi), and Backgammon. Yet one game continues to elude the efforts of computer scientists: Go, also known as Igo in Japan, Weiqi in China, and Baduk in Korea. Due in part to the strategic complexity of Go and the sheer number of moves available to each player, most typical game-playing algorithms have failed to be effective with Go. Even state-of-the-art computer Go programs are weaker than high-ranking amateurs. Thus Go provides the perfect framework for devel- oping and testing new ideas in a variety of fields in computer science, including algorithms, computational game theory, and machine learning. In this thesis, we explore the problem of move prediction in the game of Go. The move prediction problem asks how we can build a program which trains on Go games in order to predict the moves of professional and high-ranking amateur players in other Go games. An accurate move predictor could serve as a powerful component of Go-playing programs, since it can be used to reduce the branching factor in game tree search and can be used as an effective move ordering heuristic. Our first main contribution to this field is the creation of a novel move prediction system, based on a naive Bayes model, which builds upon the work of several previous move prediction systems.
    [Show full text]
  • EZGO: an Overview
    GO Overview Metaphorical Go Philosophy and Go The Dinosaur’s Hindbrain Ranks & Handicaps The Wolf Pack Go on the Information Superhighway 1 EZ This section (Overview) comes from the book EZ-GO — Oriental Strategy in a Nutshell by Bruce and Sue Wilcox. ISBN 0-9652235-4-X Copyright © 1996 by Bruce Wilcox All Rights Reserved You may photocopy this section only, exactly as is, with this cover page, and distribute it free of charge as a teaching aid. Pages of this book are not to be reproduced otherwise without written permission. This book is out of print in paper but a PDF version has been created. It can be ordered for US$25 or 20 Euro or 15 pounds sterling for CD including shipping & handling. Foreign currency must be in cash (no checks). Paypal also accepted. Send check/cash to Bruce Wilcox, 1169 Laurel Lane, San Luis Obispo, CA 93401 [email protected] 2 GO Metaphorical Go Metaphorical Go he sheriff stepped out onto the dusty street. The sun burned directly overhead, blinding him for a second. Facing the sheriff, the outlaw tensed his hands over his holsters. The outlaw Tbegan to reach for his gun, and, with a loud crack, it was all over. The outlaw, in disbelief, fell to the ground. Bobby Fisher hunched over the chess board, gazing sightlessly at the hand-carved wooden pieces. One could almost see the wheels turning in his head, looking at sequence after sequence, trying to find a way to save his beleaguered king. There! Was that it? His mind reviewed the sequence of moves he had just imagined.
    [Show full text]
  • Active Opening Book Application for Monte-Carlo Tree Search in 19×19 Go
    Active Opening Book Application for Monte-Carlo Tree Search in 19×19 Go Hendrik Baier and Mark H. M. Winands Games and AI Group, Department of Knowledge Engineering Maastricht University, Maastricht, The Netherlands Abstract The dominant approach for programs playing the Asian board game of Go is nowadays Monte-Carlo Tree Search (MCTS). However, MCTS does not perform well in the opening phase of the game, as the branching factor is high and consequences of moves can be far delayed. Human knowledge about Go openings is typically captured in joseki, local sequences of moves that are considered optimal for both players. The choice of the correct joseki in a given whole-board position, however, is difficult to formalize. This paper presents an approach to successfully apply global as well as local opening moves, extracted from databases of high-level game records, in the MCTS framework. Instead of blindly playing moves that match local joseki patterns (passive opening book application), knowledge about these moves is integrated into the search algorithm by the techniques of move pruning and move biasing (active opening book application). Thus, the opening book serves to nudge the search into the direction of tried and tested local moves, while the search is able to filter out locally optimal, but globally problematic move choices. In our experiments, active book application outperforms passive book application and plain MCTS in 19×19 Go. 1 Introduction Since the early days of Artificial Intelligence (AI) as a scientific field, games have been used as testbed and benchmark for AI architectures and algorithms. The board game of Go, for example, has stimulated con- siderable research efforts over the last decades, second only to computer chess.
    [Show full text]