Learning to Predict Life and Death with ANN in Computer Go
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesson Plans for Go in Schools
Go Lesson Plans 1 Lesson Plans for Go in Schools By Gordon E. Castanza, Ed. D. October 19, 2011 Published By Rittenberg Consulting Group 7806 108th St. NW Gig Harbor, WA 98332 253-853-4831 ©Gordon E. Castanza, Ed. D. 10/19/11 DRAFT Go Lesson Plans 2 Table of Contents Acknowledgements ......................................................................................................................... 4 Purpose/Rationale ........................................................................................................................... 5 Lesson Plan One ............................................................................................................................. 7 Basic Ideas .................................................................................................................................. 7 Introduction ............................................................................................................................... 11 The Puzzle ................................................................................................................................. 13 Surround to Capture .................................................................................................................. 14 First Capture Go ........................................................................................................................ 16 Lesson Plan Two ........................................................................................................................... 19 Units & -
Curriculum Guide for Go in Schools
Curriculum Guide 1 Curriculum Guide for Go In Schools by Gordon E. Castanza, Ed. D. October 19, 2011 Published By: Rittenberg Consulting Group 7806 108th St. NW Gig Harbor, WA 98332 253-853-4831 © 2005 by Gordon E. Castanza, Ed. D. Curriculum Guide 2 Table of Contents Acknowledgements ......................................................................................................................... 4 Purpose and Rationale..................................................................................................................... 5 About this curriculum guide ................................................................................................... 7 Introduction ..................................................................................................................................... 8 Overview ................................................................................................................................. 9 Building Go Instructor Capacity ........................................................................................... 10 Developing Relationships and Communicating with the Community ................................. 10 Using Resources Effectively ................................................................................................. 11 Conclusion ............................................................................................................................ 11 Major Trends and Issues .......................................................................................................... -
Weiqi, Baduk): a Beautiful Game
Go (Weiqi, Baduk): A Beautiful Game Description Go is a strategy board game originating from China more than two thousand years ago. Though its rules are simple, the game is intractably complex; a top professional can easily defeat the best supercomputers today. It was considered one of the four essential skills of a Chinese scholar. The game spread to Korea and Japan, has flourished in East Asia, and is becoming more well-known in the West. Today, Go is enjoyed by more than 40 million players in the world. Objectives Students will learn the rules of go and become able to play at an intermediate level. They will also understand the game in a historical and/or mathematical context. We hope (but do not require) that students will be able to play at a single-digit kyu level (1k-9k). Students will also learn something significant from one of the following (or both): ◦ The culture and history of go, including its origins, historical figure, and presence in East Asia and the western world. ◦ Some mathematical results of go, including a treatment of go using combinatorial game theory. This will offer enough flexibility for students of all majors. Prerequisites None. We expect all students to be able to understand the course material. The course is designed to suit students of all majors. This course is not designed for dan-level players. We will not allow dan-level players to take this course. Course Format This course will be taught by Joshua Wu in both lecture and interactive formats. We hope to emphasize student participation. -
Learning to Play the Game of Go
Learning to Play the Game of Go James Foulds October 17, 2006 Abstract The problem of creating a successful artificial intelligence game playing program for the game of Go represents an important milestone in the history of computer science, and provides an interesting domain for the development of both new and existing problem-solving methods. In particular, the problem of Go can be used as a benchmark for machine learning techniques. Most commercial Go playing programs use rule-based expert systems, re- lying heavily on manually entered domain knowledge. Due to the complexity of strategy possible in the game, these programs can only play at an amateur level of skill. A more recent approach is to apply machine learning to the prob- lem. Machine learning-based Go playing systems are currently weaker than the rule-based programs, but this is still an active area of research. This project compares the performance of an extensive set of supervised machine learning algorithms in the context of learning from a set of features generated from the common fate graph – a graph representation of a Go playing board. The method is applied to a collection of life-and-death problems and to 9 × 9 games, using a variety of learning algorithms. A comparative study is performed to determine the effectiveness of each learning algorithm in this context. Contents 1 Introduction 4 2 Background 4 2.1 Go................................... 4 2.1.1 DescriptionoftheGame. 5 2.1.2 TheHistoryofGo ...................... 6 2.1.3 Elementary Strategy . 7 2.1.4 Player Rankings and Handicaps . 7 2.1.5 Tsumego .......................... -
FUEGO – an Open-Source Framework for Board Games and Go Engine Based on Monte-Carlo Tree Search
FUEGO – An Open-source Framework for Board Games and Go Engine Based on Monte-Carlo Tree Search Markus Enzenberger, Martin Muller,¨ Broderick Arneson and Richard Segal Abstract—FUEGO is both an open-source software frame- available source code such as Hoffmann’s FF [20] have had work and a state of the art program that plays the game of a similarly massive impact, and have enabled much followup Go. The framework supports developing game engines for full- research. information two-player board games, and is used successfully in UEGO a substantial number of projects. The FUEGO Go program be- F contains a game-independent, state of the art came the first program to win a game against a top professional implementation of MCTS with many standard enhancements. player in 9×9 Go. It has won a number of strong tournaments It implements a coherent design, consistent with software against other programs, and is competitive for 19 × 19 as well. engineering best practices. Advanced features include a lock- This paper gives an overview of the development and free shared memory architecture, and a flexible and general current state of the FUEGO project. It describes the reusable components of the software framework and specific algorithms plug-in architecture for adding domain-specific knowledge in used in the Go engine. the game tree. The FUEGO framework has been proven in applications to Go, Hex, Havannah and Amazons. I. INTRODUCTION The main innovation of the overall FUEGO framework may lie not in the novelty of any of its specific methods and Research in computing science is driven by the interplay algorithms, but in the fact that for the first time, a state of of theory and practice. -
Computer Go: an AI Oriented Survey
Computer Go: an AI Oriented Survey Bruno Bouzy Université Paris 5, UFR de mathématiques et d'informatique, C.R.I.P.5, 45, rue des Saints-Pères 75270 Paris Cedex 06 France tel: (33) (0)1 44 55 35 58, fax: (33) (0)1 44 55 35 35 e-mail: [email protected] http://www.math-info.univ-paris5.fr/~bouzy/ Tristan Cazenave Université Paris 8, Département Informatique, Laboratoire IA 2, rue de la Liberté 93526 Saint-Denis Cedex France e-mail: [email protected] http://www.ai.univ-paris8.fr/~cazenave/ Abstract Since the beginning of AI, mind games have been studied as relevant application fields. Nowadays, some programs are better than human players in most classical games. Their results highlight the efficiency of AI methods that are now quite standard. Such methods are very useful to Go programs, but they do not enable a strong Go program to be built. The problems related to Computer Go require new AI problem solving methods. Given the great number of problems and the diversity of possible solutions, Computer Go is an attractive research domain for AI. Prospective methods of programming the game of Go will probably be of interest in other domains as well. The goal of this paper is to present Computer Go by showing the links between existing studies on Computer Go and different AI related domains: evaluation function, heuristic search, machine learning, automatic knowledge generation, mathematical morphology and cognitive science. In addition, this paper describes both the practical aspects of Go programming, such as program optimization, and various theoretical aspects such as combinatorial game theory, mathematical morphology, and Monte- Carlo methods. -
Go Books Summary
Evanston Go Club Ian Feldman Lending Library A Compendium of Trick Plays Nihon Ki-in All About Life and Death Cho Chikun All About Thickness - Understanding Moyo and Influence Yoshio Ishida Appreciating Famous Games Shuzo Ohira Cho Hun-Hyeon's Lectures on Go Techniques Vol 1 Cho Hun-Hyeon Cho hun-Hyun's Lectures on the Opening Vol 1 Cho Hun-Hyun Cosmic Go - A Guide to 4-Stone Handicap Games Sanjit Chatterjee and Yang Huiren Counting Liberties and Winning Capturing Races Richard Hunter Cross-Cut Workshop Richard Hunter Dictionary of Basic Joseki Vol 1 Yoshio Ishida Dictionary of Basic Joseki Vol 2 Yoshio Ishida Dictionary of Basic Joseki Vol 3 Yoshio Ishida Dictionary of Basic Tesuji Vol 1 - Tesuji for Attacking Fujisawa Shuko Dictionary of Basic Tesuji Vol 2 - Tesuji for Defending Fujisawa Shuko Elementary Go Series, Vol 2 - 38 Basic Joseki Kiyoshi Kosugi and James Davies Elementary Go Series, Vol 3 - Tesuji James Davies Elementary Go Series, Vol 6 - The Endgame Tomoko Ogawa and James Davies Enclosure Josekis - Attacking and Defending the Corner Takemiya Masaki Essential Life and Death Vol 2 Yoo Chang-Hyuk Essential Life and Death Vol 3 Yoo Chang-Hyuk EZ Go - Oriental Strategy in a Nutshell Bruce Wilcox Falling in Love with Baduk Korean Go Association Fighting Ko Jin Jiang Fundamental Principles of Go Yilun Yang Galactic Go Vol 1 - A Guide to 3-Stone Handicap Games Sanjit Chatterjee and Yang Huiren Get Strong at Go Series, Vol 1 - Get Strong at The Opening Richard Bozulich Get Strong at Go Series, Vol 10 - Get Strong at Attacking Richard -
Table of Contents
Jay Burmeister Janet Wiles Departments of Computer Science and Psychology The University of Queensland, QLD 4072, Australia Technical Report 339, Department of Computer Science, The University of Queensland, 1995 (This document is - permanently - under construction). See also: Jay Burmeister’s PhD Thesis (2000) Table of Contents 1.0 Introduction 2.0 The Game of Go 2.1 Liberties and Capture 2.1.1 Suicide 2.2 Strings 2.3 Eyes 2.3.1 Dead or Alive 2.3.2 False Eyes 2.3.3 Seki 2.4 Repetition of Board Positions - Ko 2.5 Sente and Gote 2.6 Ladders 2.6.1 Snapbacks 2.7 Links 2.8 Groups 2.9 Armies 2.10 Winning the Game 2.11 The Go Handicap and Ranking System 3.0 The Challenge of Programming Go 3.1 A Comparison of Chess and Go 3.2 The Complexity of Go 3.3 Why Go Cannot be Programmed Like Chess 4.0 History of the Computer Go Field 4.1 Academic Work 4.1.1 Zobrist 4.1.2 Ryder 4.1.3 Reitman and Wilcox 4.1.4 Other Academic Work 4.2 Programs 4.2.1 The Many Faces of Go 4.2.1.1 G2 4.2.1.2 Cosmos 4.2.1.3 Many Faces of Go 4.2.2 Go4++ 4.2.2.1 Candidate Move Generation 4.2.2.2 Evaluation Function 4.2.2.3 Performance and Timeline 4.2.3 Handtalk 4.3 Computer Go Competitions 4.3.1 The Ing Prize 5.0 What's in a Go Program? 6.0 Performance of Current Programs 6.1 Program versus Program Performance 6.2 Program versus Human Performance 7.0 Future Improvements in Performance 8.0 Go and Computer Go Resources on the Internet 8.1 Computer Go related Internet Resources 8.1.1 Anonymous FTP Archive and Mirror Sites 8.1.2 The Internet Go Server (IGS) 8.1.3 Game Record Formats -
The Way to Go Is a Copyrighted Work
E R I C M A N A G F O O N How to U I O N D A T www.usgo.org www.agfgo.org play the Asian game of Go The Way to by Karl Baker American Go Association Box 397 Old Chelsea Station New York, NY 10113 GO Legal Note: The Way To Go is a copyrighted work. Permission is granted to make complete copies for personal use. Copies may be distributed freely to others either in print or electronic form, provided no fee is charged for distribution and all copies contain this copyright notice. The Way to Go by Karl Baker American Go Association Box 397 Old Chelsea Station New York, NY 10113 http://www.usgo.org Cover print: Two Immortals and the Woodcutter A watercolor by Seikan. Date unknown. How to play A scene from the Ranka tale: Immortals playing go as the the ancient/modern woodcutter looks on. From Japanese Prints and the World of Go by William Pinckard at: Asian Game of Go http://www.kiseido.com/printss/cover.htm Dedicated to Ann All in good time there will come a climax which will lift one to the heights, but first a foundation must be laid, INSPIRED BY HUNDREDS broad, deep and solid... OF BAFFLED STUDENTS Winfred Ernest Garrison © Copyright 1986, 2008 Preface American Go Association The game of GO is the essence of simplicity and the ultimate in complexity all at the same time. It is taught earnestly at military officer training schools in the Orient, as an exercise in military strategy. -
Move Prediction in the Game of Go
Move Prediction in the Game of Go A Thesis presented by Brett Alexander Harrison to Computer Science in partial fulfillment of the honors requirements for the degree of Bachelor of Arts Harvard College Cambridge, Massachusetts April 1, 2010 Abstract As a direct result of artificial intelligence research, computers are now expert players in a variety of popular games, including Checkers, Chess, Othello (Reversi), and Backgammon. Yet one game continues to elude the efforts of computer scientists: Go, also known as Igo in Japan, Weiqi in China, and Baduk in Korea. Due in part to the strategic complexity of Go and the sheer number of moves available to each player, most typical game-playing algorithms have failed to be effective with Go. Even state-of-the-art computer Go programs are weaker than high-ranking amateurs. Thus Go provides the perfect framework for devel- oping and testing new ideas in a variety of fields in computer science, including algorithms, computational game theory, and machine learning. In this thesis, we explore the problem of move prediction in the game of Go. The move prediction problem asks how we can build a program which trains on Go games in order to predict the moves of professional and high-ranking amateur players in other Go games. An accurate move predictor could serve as a powerful component of Go-playing programs, since it can be used to reduce the branching factor in game tree search and can be used as an effective move ordering heuristic. Our first main contribution to this field is the creation of a novel move prediction system, based on a naive Bayes model, which builds upon the work of several previous move prediction systems. -
EZGO: an Overview
GO Overview Metaphorical Go Philosophy and Go The Dinosaur’s Hindbrain Ranks & Handicaps The Wolf Pack Go on the Information Superhighway 1 EZ This section (Overview) comes from the book EZ-GO — Oriental Strategy in a Nutshell by Bruce and Sue Wilcox. ISBN 0-9652235-4-X Copyright © 1996 by Bruce Wilcox All Rights Reserved You may photocopy this section only, exactly as is, with this cover page, and distribute it free of charge as a teaching aid. Pages of this book are not to be reproduced otherwise without written permission. This book is out of print in paper but a PDF version has been created. It can be ordered for US$25 or 20 Euro or 15 pounds sterling for CD including shipping & handling. Foreign currency must be in cash (no checks). Paypal also accepted. Send check/cash to Bruce Wilcox, 1169 Laurel Lane, San Luis Obispo, CA 93401 [email protected] 2 GO Metaphorical Go Metaphorical Go he sheriff stepped out onto the dusty street. The sun burned directly overhead, blinding him for a second. Facing the sheriff, the outlaw tensed his hands over his holsters. The outlaw Tbegan to reach for his gun, and, with a loud crack, it was all over. The outlaw, in disbelief, fell to the ground. Bobby Fisher hunched over the chess board, gazing sightlessly at the hand-carved wooden pieces. One could almost see the wheels turning in his head, looking at sequence after sequence, trying to find a way to save his beleaguered king. There! Was that it? His mind reviewed the sequence of moves he had just imagined. -
Complementing, Not Competing
Complementing, Not Competing An Ethnographic Study of the Internet and American Go Communities Drew Harry Sean Munson May 2005 Culture, Knowledge, and Creativity 2 Table of Contents Table of Contents ........................................................................................................................................... 2 Introduction..................................................................................................................................................... 4 Background and Context ............................................................................................................................ 6 Introduction to Go ......................................................................................................................................... 7 The Massachusetts Go Association.............................................................................................................. 9 Internet Go.................................................................................................................................................... 10 Research Methods........................................................................................................................................13 Interview Profiles......................................................................................................................................... 14 Interview Analysis......................................................................................................................................