Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Jay Burmeister Janet Wiles Departments of Computer Science and Psychology The University of Queensland, QLD 4072, Australia Technical Report 339, Department of Computer Science, The University of Queensland, 1995 (This document is - permanently - under construction). See also: Jay Burmeister’s PhD Thesis (2000) Table of Contents 1.0 Introduction 2.0 The Game of Go 2.1 Liberties and Capture 2.1.1 Suicide 2.2 Strings 2.3 Eyes 2.3.1 Dead or Alive 2.3.2 False Eyes 2.3.3 Seki 2.4 Repetition of Board Positions - Ko 2.5 Sente and Gote 2.6 Ladders 2.6.1 Snapbacks 2.7 Links 2.8 Groups 2.9 Armies 2.10 Winning the Game 2.11 The Go Handicap and Ranking System 3.0 The Challenge of Programming Go 3.1 A Comparison of Chess and Go 3.2 The Complexity of Go 3.3 Why Go Cannot be Programmed Like Chess 4.0 History of the Computer Go Field 4.1 Academic Work 4.1.1 Zobrist 4.1.2 Ryder 4.1.3 Reitman and Wilcox 4.1.4 Other Academic Work 4.2 Programs 4.2.1 The Many Faces of Go 4.2.1.1 G2 4.2.1.2 Cosmos 4.2.1.3 Many Faces of Go 4.2.2 Go4++ 4.2.2.1 Candidate Move Generation 4.2.2.2 Evaluation Function 4.2.2.3 Performance and Timeline 4.2.3 Handtalk 4.3 Computer Go Competitions 4.3.1 The Ing Prize 5.0 What's in a Go Program? 6.0 Performance of Current Programs 6.1 Program versus Program Performance 6.2 Program versus Human Performance 7.0 Future Improvements in Performance 8.0 Go and Computer Go Resources on the Internet 8.1 Computer Go related Internet Resources 8.1.1 Anonymous FTP Archive and Mirror Sites 8.1.2 The Internet Go Server (IGS) 8.1.3 Game Record Formats 8.1.4 The Computer-Go Mailing List 8.1.5 The Computer Go Ladder 8.1.6 Computer Go Competitions/Tournaments and Results 8.1.7 Computer Go Bibliographies 8.1.8 Game Databases 8.2 Go Related Internet Resources 8.2.1 Go Rules and Learning to Play 8.2.2 Go Learning Aids and Tutorials 8.2.3 The Go News Group 8.2.4 The Go Frequently Asked Questions (FAQ) 9.0 Conclusions Appendix A Common Go Terms and Their English Equivalents References 1.0 Introduction This document introduces the reader to the computer Go field and Internet resources pertaining to Go and Computer Go. For readers unfamiliar with Go, section 2 describes the rules and common concepts of the game. Readers comfortable with their knowledge of Go may skip section 2, reading it only if the use of terms in this document needs clarification. Section 6 describes the current state-of-the-art in Go programs which is far behind that of Chess programs even allowing for the comparative disparity in the amount of effort expended on developing programs for each game. Theoretical and practical reasons are given in section 3 for this disparity as well as reasons why Go cannot be programmed in a similar fashion to Chess (see Table 1 for a brief comparison). The history of the computer Go field is briefly outlined in section 4. Included in this outline are descriptions of some of the academic work that has used Go as a vehicle to pursue research, computer Go competitions and results, and programs. Internet resources pertaining to Go and computer Go are described in section 8. The resources listed include a server for playing a game of Go, an FTP archive site and a mailing list which provides a forum for discussing aspects of programming Go. 2.0 The Game of Go Go is a two player board game in which chance plays no part. It is an Oriental game which originated between 2500 and 4000 years ago and enjoys a similar status in Japan, China, Taiwan and Korea as Chess does in Western countries. Go is played on a board which consists of a grid made by the intersection of horizontal and vertical lines. The size of the board is generally 19 x 19, however, 9 x 9 and 13 x 13 sized boards are also used for playing quicker games. Intersection points are connected along the horizontal and vertical lines such that the neighbours of any given point are the intersection points that are horizontally and vertically adjacent to it. Two players alternate in placing black and white stones on the intersection points of the board (including edges and corners of the board) with the black player moving first. The aim of Go is to capture more territory and prisoners than your opponent. 2.1 Liberties and Capture Empty points that neighbour a stone are called its liberties (points marked L in Figure 1). Any stone which has no liberties is captured and removed from the board (white stone in Figure 2). This is the only instance in which stones, once placed, are moved. 2.1.1 Suicide A player cannot commit suicide by placing a stone in a position which leads to its immediate capture (points marked X in Figure 3). 2.2 Strings Stones of the same colour can be joined into strings by being horizontally or vertically connected to each other (Figure 4). Single stones can also be described as strings which we will refer to as unitary strings. Instead of the stones in a string having individual liberties, the liberties of the constituent stones of the string become the liberties of the string (points marked L in Figure 5). To be captured, a string must be surrounded by opponent stones such that no stone in the string has any liberties (black stones in Figure 6). When a player fills the penultimate liberty of a stone or string, it is courtesy to declare "Atari!" which alerts the owner of the stone or string of its impending capture. 2.3 Eyes Eyes are formed when a string surrounds one or more empty intersection points (point marked E in Figure 7). Strings which contain a single eye can be captured by first being surrounded and then the eye being filled (Figure 8). Filling the eye does not violate the suicide rule since the opponents captured stones are first removed, creating liberties for the last stone played. A string that has two eyes (points marked E in Figure 9) is safe from capture since there is no way for an opponent to capture such a string. The reason for the inability to capture a string with two eyes is that the stone played in the first eye will be subject to the suicide rule. Dead or Alive Strings which have two eyes are said to be alive. In general, a string is alive if it cannot be captured even if the opponent moves first. A string is considered to be dead if there is no way to stop it from being captured even if its owner moves first. 2.3.2 False Eyes 2.3.3 Seki 2.4 Repetition of Board Positions - Ko To stop endless cycles occurring, a player cannot play a stone which causes a previous board position to be repeated. In general, the only situation in which a cycle can arise is called a ko. In Figure 10, a white stone at 1 is captured by a black stone at 2 which could itself be captured by a white stone being played at 1 again. Such a situation is prohibited by the rule against repetition. A ko situation can lead to a ko fight (Figure 11) in which the player which loses a stone in the ko (white stone at 4 captured by black at 1) threatens an opponent stone elsewhere (at 2) and then recaptures the opponent stone in the ko (at 4) after the opponent responds to the threat (at 3). 2.5 Sente and Gote Skilful players can engineer the game so that they gain the initiative for a number of moves and dictate the response of their opponent. In such a case, a player is said to have sente and the opponent to have gote. Sente usually occurs when players place their opponent in a situation of having to save stones and only having one option available to do so. Sente allows a player to control the course of the game so as to execute a plan of several moves without the opponent being able to frustrate the plan in midstream. 2.6 Ladders Ladders are a capturing race between a group that is almost enclosed, and a surrounding group. Consider the initial stones in Figure 12 (the stones without numbers). The black stone is doomed to be captured no matter what the Black player does. When White plays at 1, the black stone is threatened with capture. To defend this stone, Black plays at 2. White once again threatens capture by playing at 3. This process continues and results in a ladder being formed. White eventually wins the ladder when the board edge is encountered. 2.7 Links The only links between stones which is recognized in the rules of Go is between horizontally and vertically adjacent stones (called nobi). In practice however, there are several links which are recognized by experienced Go players (Figure 13). The ikken tobi link can be physically connected as long as black plays next. The kosumi link can be made as long as black plays next or each of the connecting points are empty if white plays first.
Recommended publications
  • Lesson Plans for Go in Schools
    Go Lesson Plans 1 Lesson Plans for Go in Schools By Gordon E. Castanza, Ed. D. October 19, 2011 Published By Rittenberg Consulting Group 7806 108th St. NW Gig Harbor, WA 98332 253-853-4831 ©Gordon E. Castanza, Ed. D. 10/19/11 DRAFT Go Lesson Plans 2 Table of Contents Acknowledgements ......................................................................................................................... 4 Purpose/Rationale ........................................................................................................................... 5 Lesson Plan One ............................................................................................................................. 7 Basic Ideas .................................................................................................................................. 7 Introduction ............................................................................................................................... 11 The Puzzle ................................................................................................................................. 13 Surround to Capture .................................................................................................................. 14 First Capture Go ........................................................................................................................ 16 Lesson Plan Two ........................................................................................................................... 19 Units &
    [Show full text]
  • Curriculum Guide for Go in Schools
    Curriculum Guide 1 Curriculum Guide for Go In Schools by Gordon E. Castanza, Ed. D. October 19, 2011 Published By: Rittenberg Consulting Group 7806 108th St. NW Gig Harbor, WA 98332 253-853-4831 © 2005 by Gordon E. Castanza, Ed. D. Curriculum Guide 2 Table of Contents Acknowledgements ......................................................................................................................... 4 Purpose and Rationale..................................................................................................................... 5 About this curriculum guide ................................................................................................... 7 Introduction ..................................................................................................................................... 8 Overview ................................................................................................................................. 9 Building Go Instructor Capacity ........................................................................................... 10 Developing Relationships and Communicating with the Community ................................. 10 Using Resources Effectively ................................................................................................. 11 Conclusion ............................................................................................................................ 11 Major Trends and Issues ..........................................................................................................
    [Show full text]
  • Learning to Play the Game of Go
    Learning to Play the Game of Go James Foulds October 17, 2006 Abstract The problem of creating a successful artificial intelligence game playing program for the game of Go represents an important milestone in the history of computer science, and provides an interesting domain for the development of both new and existing problem-solving methods. In particular, the problem of Go can be used as a benchmark for machine learning techniques. Most commercial Go playing programs use rule-based expert systems, re- lying heavily on manually entered domain knowledge. Due to the complexity of strategy possible in the game, these programs can only play at an amateur level of skill. A more recent approach is to apply machine learning to the prob- lem. Machine learning-based Go playing systems are currently weaker than the rule-based programs, but this is still an active area of research. This project compares the performance of an extensive set of supervised machine learning algorithms in the context of learning from a set of features generated from the common fate graph – a graph representation of a Go playing board. The method is applied to a collection of life-and-death problems and to 9 × 9 games, using a variety of learning algorithms. A comparative study is performed to determine the effectiveness of each learning algorithm in this context. Contents 1 Introduction 4 2 Background 4 2.1 Go................................... 4 2.1.1 DescriptionoftheGame. 5 2.1.2 TheHistoryofGo ...................... 6 2.1.3 Elementary Strategy . 7 2.1.4 Player Rankings and Handicaps . 7 2.1.5 Tsumego ..........................
    [Show full text]
  • Computer Go: an AI Oriented Survey
    Computer Go: an AI Oriented Survey Bruno Bouzy Université Paris 5, UFR de mathématiques et d'informatique, C.R.I.P.5, 45, rue des Saints-Pères 75270 Paris Cedex 06 France tel: (33) (0)1 44 55 35 58, fax: (33) (0)1 44 55 35 35 e-mail: [email protected] http://www.math-info.univ-paris5.fr/~bouzy/ Tristan Cazenave Université Paris 8, Département Informatique, Laboratoire IA 2, rue de la Liberté 93526 Saint-Denis Cedex France e-mail: [email protected] http://www.ai.univ-paris8.fr/~cazenave/ Abstract Since the beginning of AI, mind games have been studied as relevant application fields. Nowadays, some programs are better than human players in most classical games. Their results highlight the efficiency of AI methods that are now quite standard. Such methods are very useful to Go programs, but they do not enable a strong Go program to be built. The problems related to Computer Go require new AI problem solving methods. Given the great number of problems and the diversity of possible solutions, Computer Go is an attractive research domain for AI. Prospective methods of programming the game of Go will probably be of interest in other domains as well. The goal of this paper is to present Computer Go by showing the links between existing studies on Computer Go and different AI related domains: evaluation function, heuristic search, machine learning, automatic knowledge generation, mathematical morphology and cognitive science. In addition, this paper describes both the practical aspects of Go programming, such as program optimization, and various theoretical aspects such as combinatorial game theory, mathematical morphology, and Monte- Carlo methods.
    [Show full text]
  • The Way to Go Is a Copyrighted Work
    E R I C M A N A G F O O N How to U I O N D A T www.usgo.org www.agfgo.org play the Asian game of Go The Way to by Karl Baker American Go Association Box 397 Old Chelsea Station New York, NY 10113 GO Legal Note: The Way To Go is a copyrighted work. Permission is granted to make complete copies for personal use. Copies may be distributed freely to others either in print or electronic form, provided no fee is charged for distribution and all copies contain this copyright notice. The Way to Go by Karl Baker American Go Association Box 397 Old Chelsea Station New York, NY 10113 http://www.usgo.org Cover print: Two Immortals and the Woodcutter A watercolor by Seikan. Date unknown. How to play A scene from the Ranka tale: Immortals playing go as the the ancient/modern woodcutter looks on. From Japanese Prints and the World of Go by William Pinckard at: Asian Game of Go http://www.kiseido.com/printss/cover.htm Dedicated to Ann All in good time there will come a climax which will lift one to the heights, but first a foundation must be laid, INSPIRED BY HUNDREDS broad, deep and solid... OF BAFFLED STUDENTS Winfred Ernest Garrison © Copyright 1986, 2008 Preface American Go Association The game of GO is the essence of simplicity and the ultimate in complexity all at the same time. It is taught earnestly at military officer training schools in the Orient, as an exercise in military strategy.
    [Show full text]
  • Move Prediction in the Game of Go
    Move Prediction in the Game of Go A Thesis presented by Brett Alexander Harrison to Computer Science in partial fulfillment of the honors requirements for the degree of Bachelor of Arts Harvard College Cambridge, Massachusetts April 1, 2010 Abstract As a direct result of artificial intelligence research, computers are now expert players in a variety of popular games, including Checkers, Chess, Othello (Reversi), and Backgammon. Yet one game continues to elude the efforts of computer scientists: Go, also known as Igo in Japan, Weiqi in China, and Baduk in Korea. Due in part to the strategic complexity of Go and the sheer number of moves available to each player, most typical game-playing algorithms have failed to be effective with Go. Even state-of-the-art computer Go programs are weaker than high-ranking amateurs. Thus Go provides the perfect framework for devel- oping and testing new ideas in a variety of fields in computer science, including algorithms, computational game theory, and machine learning. In this thesis, we explore the problem of move prediction in the game of Go. The move prediction problem asks how we can build a program which trains on Go games in order to predict the moves of professional and high-ranking amateur players in other Go games. An accurate move predictor could serve as a powerful component of Go-playing programs, since it can be used to reduce the branching factor in game tree search and can be used as an effective move ordering heuristic. Our first main contribution to this field is the creation of a novel move prediction system, based on a naive Bayes model, which builds upon the work of several previous move prediction systems.
    [Show full text]
  • EZGO: an Overview
    GO Overview Metaphorical Go Philosophy and Go The Dinosaur’s Hindbrain Ranks & Handicaps The Wolf Pack Go on the Information Superhighway 1 EZ This section (Overview) comes from the book EZ-GO — Oriental Strategy in a Nutshell by Bruce and Sue Wilcox. ISBN 0-9652235-4-X Copyright © 1996 by Bruce Wilcox All Rights Reserved You may photocopy this section only, exactly as is, with this cover page, and distribute it free of charge as a teaching aid. Pages of this book are not to be reproduced otherwise without written permission. This book is out of print in paper but a PDF version has been created. It can be ordered for US$25 or 20 Euro or 15 pounds sterling for CD including shipping & handling. Foreign currency must be in cash (no checks). Paypal also accepted. Send check/cash to Bruce Wilcox, 1169 Laurel Lane, San Luis Obispo, CA 93401 [email protected] 2 GO Metaphorical Go Metaphorical Go he sheriff stepped out onto the dusty street. The sun burned directly overhead, blinding him for a second. Facing the sheriff, the outlaw tensed his hands over his holsters. The outlaw Tbegan to reach for his gun, and, with a loud crack, it was all over. The outlaw, in disbelief, fell to the ground. Bobby Fisher hunched over the chess board, gazing sightlessly at the hand-carved wooden pieces. One could almost see the wheels turning in his head, looking at sequence after sequence, trying to find a way to save his beleaguered king. There! Was that it? His mind reviewed the sequence of moves he had just imagined.
    [Show full text]
  • Complementing, Not Competing
    Complementing, Not Competing An Ethnographic Study of the Internet and American Go Communities Drew Harry Sean Munson May 2005 Culture, Knowledge, and Creativity 2 Table of Contents Table of Contents ........................................................................................................................................... 2 Introduction..................................................................................................................................................... 4 Background and Context ............................................................................................................................ 6 Introduction to Go ......................................................................................................................................... 7 The Massachusetts Go Association.............................................................................................................. 9 Internet Go.................................................................................................................................................... 10 Research Methods........................................................................................................................................13 Interview Profiles......................................................................................................................................... 14 Interview Analysis......................................................................................................................................
    [Show full text]
  • What Is the Project Title
    Artificial Intelligence for Go CIS 499 Senior Design Project Final Report Kristen Ying Advisors: Dr. Badler and Dr. Likhachev University of Pennsylvania PROJECT ABSTRACT Go is an ancient board game, originating in China – where it is known as weiqi - before 600 B.C. It spread to Japan (where it is also known as Go), to Korea as baduk, and much more recently to Europe and America [American Go Association]. This game, in which players take turn placing stones on a 19x19 board in an attempt to capture territory, is polynomial-space hard [Reyzin]. Checkers is also polynomial-space hard, and is a solved problem [Schaeffer]. However, the sheer magnitude of options (and for intelligent algorithms, sheer number of possible strategies) makes it infeasible to create even passable novice AI with an exhaustive pure brute-force approach on modern hardware. The board is 19 x19, which, barring illegal moves, allows for about 10171 possible ways to execute a game. This number is about 1081 times greater than the believed number of elementary particles contained in the known universe [Keim]. Previously investigated approaches to creating AI for Go include human-like models such as pattern recognizers and machine learning [Burmeister and Wiles]. There are a number of challenges to these approaches, however. Machine learning algorithms can be very sensitive to the data and style of play with which they are trained, and approaches modeling human thought can be very sensitive to the designer‟s perception of how one thinks during a game. Professional Go players seem to have a very intuitive sense of how to play, which is difficult to model.
    [Show full text]
  • Learning to Predict Life and Death with ANN in Computer Go
    Proceeding of the International Conference on Computing, Communications and Control Technologies, August 14-17, 2004, Austin, Texas, USA Learning to Predict Life and Death with ANN in Computer Go Julian WONG, Wai Hung & Andy CHUN, Hon Wai Department of Computer Science City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong SAR [email protected] & [email protected] ABSTRACT Thesis [5] also performed related ANN research on Life and Death. The following compares our approach with Tsumego (死活 – Life and Death) is a computer Go game these three approaches. sub-problem that determines whether a group of stones is safe and free from ever being captured – the “life” state, Most of the publications related to Life and Death were or may potentially be captured after a sequence of moves, published by Thomas Wolf, the creator of GoTools [3], a no matter how he/she defenses it – the “death” state. The proprietary software that solves Life and Death problems. ability to quickly and accurately determine “life and From [6, 7], Wolf revealed that GoTools used a heuristic death” is crucial to becoming an expert at Go. Humans approach. In the homepage of GoTools [3], it states that usually learn this skill by studying examples in classic Go GoTools has been ranked as 5-dan by a Nihon Ki-in books written by professional players. Most examples (Japan Go Association) ranked amateur 6-dan player, in usually use only a corner of the Go board or a side of the solving Life and Death. 5-dan is a fairly high ranking.
    [Show full text]
  • UCT-Enhanced Deep Convolutional Neural Network for Move Recommendation in Go
    MQP CDR#GXS 1501 UCT-Enhanced Deep Convolutional Neural Network for Move Recommendation in Go a Major Qualifying Project Report submitted to the faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for th e Degree of Bachelor of Science by Sarun Paisarnsrisomsuk Pitchaya Wiratchotisatian April 30, 2015 Professor Gábor N. Sárközy, Major Advisor Abstract Deep convolutional neural networks (CNN) have been proved to be useful in predicting moves of human Go experts [10], [12]. Combining Upper Confidence bounds applied to Trees (UCT) with a large deep CNN creates an even more powerful artificial intelligence method in playing Go [12]. Our project introduced a new feature, board patterns at the end of a game, used as inputs to the network. We implemented a small, single-thread, 1-hidden-layer deep CNN without using GPU, and trained it by supervised learning from a database of human professional games. By adding the new feature, our best model was able to correctly predict the experts’ move in 18% of the positions, compared to 6% without this feature. In practice, even though the board pattern at the end of the game is invisible to Go players until the very end of the game, collecting these statistics during each simulation in UCT can approximate the likelihood of which parts of the board belong to the players. We created another dataset by using UCT to simulate a number of playouts and calculating the average influence value of Black and White positions in those boards at the end of the simulations. We used this dataset as the input to the deep CNN and found that the network was able to correctly predict the experts’ move in 9% of positions.
    [Show full text]
  • Complete Journal (PDF)
    June2000 26/9/00 8:47 pm Page 1 BRITISH GO JOURNAL NO 119 SUMMER 2000 ~ CONTENTS Editorial . 2 News and UK Tournament Results ~ Tony Atkins . 2 The Magic of Go Stones ~ Jackie Chai . 7 Council House ~ The President’s Report . 8 Go Tutor ~ Approaches to Joseki ~ edited by Charles Matthews . 10 Some Japanese Concepts ~ Richard Hunter . 13 A Weekend in Helsinki ~ Matthew Macfadyen . 16 Mick Reiss Interviewed . 18 Escaping with a Cutting Stone ~ Andrew Grant . 20 Guide to the BGA Web Site ~ The Tournaments Page ~ Nick Wedd . 23 Back to Basics ~ Problems based on the 6-point Corner ~ Steve Bailey . 24 Go Professional III ~ A Review ~ Paul Hazelden . 25 Council House ~ Annual General Meeting of the British Go Association . 27 European Pair Go Championship 2000 ~ Francis Roads . 28 Seong-June Kim plays Matthew Macfadyen at Coventry ~ Seong-June Kim . 30 The Depression ~ Good for Go, but not enough ~ Franco Pratesi . 32 The British Go Congress ~ A Short History ~ Tony Atkins . 33 Counting Liberties ~ Capturing Races Involving Ko ~ Richard Hunter . 35 Matthew Cocke plays Victor Chow at the London Open ~ Victor Chow . 36 Review ~ Go at Ease from Yutopian Enterprises ~ Mogens Jakobsen . 38 More Microscopy ~ Part 3 ~ Charles Matthews . 40 Why Do We Make Bad Moves? ~ Part 6 ~ Denis Feldmann . 43 Diagonal Openings ~ Part 3 ~ Charles Matthews . 44 Experimental Tournament ~ Steve Bailey . 47 The Wonderful World of the IGS ~ Tristan Jones . 48 Come Back When You’re Stronger ~ Charles Matthews . 51 Back to Basics ~ A discussion of the 6-point Corner problems ~ Steve Bailey. 52 Back to Basics ~ The Problem Solutions .
    [Show full text]