Introduction the Majority of Animal Species Reproduce Sexually. Sexual

Total Page:16

File Type:pdf, Size:1020Kb

Introduction the Majority of Animal Species Reproduce Sexually. Sexual Introduction The majority of animal species reproduce sexually. Sexual reproduction is generally considered to be advantageous because it results in genetically variable progeny due to segregation and recombination events (Williams, 1975; Maynard Smith, 1978; Bell, 1982). The maintenance of variation in the population allows rapid evolutionary response to shifts in the environment through adaptation and speciation (Van Valen, 1973; Bell, 1982). Because asexual species lack mechanisms for recombination, they are generally considered to be genetically inflexible and therefore long term evolutionary dead ends. However, the advantage of sexual reproduction may not be universal, so that under certain conditions, asexual reproduction is advantageous (Vrijenhoek et al, 1989). There are about 70 vertebrate species that reproduce by various ameotic mechanisms which lack recombination, and therefore result in genetically identical (i.e. clonal) progeny (Vrijenhoek et al, 1989). Clonal reproduction transmits the entire genome intact to the next generation, thus ensuring that favorable gene combinations are maintained (Maynard Smith, 1975). Obligate self-fertilization is not ameotic, but once homozygosity is reached (following approximately10 generations of selfing), parent and progeny are genetically identical, and the reproduction system is effectively clonal (Bell 1982). Individuals of a self-fertilizing species are always assured of reproductive success, and these species avoid the costs and risks associated with sexual reproduction (Maynard Smith, 1975). This allows the rapid colonization of new habitats relative to a sexual species, by even a single individual. Self-fertilization spreads the genome over a wide range as individual clones migrate, so that the overall success of the clonal lineage may not be threatened by local habitat changes. A self-fertilizing clonal species may change environments to suit the genome rather than changing the genome to suit the environment. The marine killifish Rivulus marmoratus is an obligate self-fertilizing 117 hermaphrodite and is the only vertebrate known to reproduce by internal self-fertilization (Harrington, 1961, 1963). Natural populations are composed almost entirely of selfing hermaphrodites, so that the population structure has been described as arrays of homozygous clones. This killifish is one of the few organisms to exist in nature in a homozygous state (Harrington & Kallman, 1968, Turner, Elder, Laughlin, & Davis, 1992a). Populations sampled so far have had high clonal diversity, with low representation of each clone (Turner, Elder, Laughlin, and Davis. 1992b). Clonal composition at a particular locale appears highly variable over time, suggesting a very high rate of clonal turnover due to migration and/or local extinctions (Turner et al, 1992 b). Though most natural populations of R. marmoratus surveyed thus far consist almost entirely of selfing hermaphrodites, males have been collected at low frequencies in a few populations. In Floridian samples, males comprise less than 1% of individuals collected. In most other locations sampled, males have not been found at all, but there have been two conspicuous exceptions: males comprised up to 24% of the samples from several barrier islands off the coast of Belize in 1988-89 (Turner et al, 1992b) and high frequencies of males were also reported on Curacao in the Dutch Antilles during the 1960's (Kristensen, 1970). Males consistently appear in laboratory stocks, even among those descended from natural populations in which males were never recorded. R.W. Harrington (1967) discovered that in three Floridian clonal lines, males could be induced in the laboratory at very high frequencies (up to 100%) by incubation of embryos at low temperatures (19° C), and to a more variable extent, by rearing juveniles at high temperatures (30° C)(Harrington, 1967). He delineated a "phenocritical" period of embryonic development for sex phenotype (Harrington, 1968). To date, the adaptive significance of this phenomenon is unclear. Is temperature-dependent male induction part of an "environmental sex determination" (ESD) system in this species, perhaps one that facilitates outcrossing under certain conditions? Or is it simply a laboratory 2 phenomenon that is not relevant to most natural populations, so that these males induced in the laboratory may be viewed as developmental anomalies? Harrington detected some variation among the three clones he studied in the extent of male induction, especially at higher rearing temperatures. Do these differences stem from adaptive modifications of an ESD to particular local conditions, especially temperature, encountered by specific clones, or are these differences clone-specific effects indicating differing degrees of developmental stability between clones? The objective of this research is to detect differences between clonal lines in the low temperatures at which males are induced. If these differences correlate with the geographic location from which these clonal lines were originally collected, this may be evidence that low temperature induction of males in this species is part of an environmental sex determination system. If low temperature is important in the induction of males in nature, then the temperature at which males are induced may be related to the local temperature regime. Therefore, it was hypothesized that clonal lines originally collected from the extremes of the range (Florida and Brazil) will produce males at a lower threshold temperature than clonal lines originally collected from the more equatorial center of the range of this species. Literature Review Research history: Rivulus marmoratus was originally described as a species from Cuba by Poey in 1880. Later, it was classified as a synonym of R. cylindraceus, a Cuban species to which it does not appear to be closely related, but it was revived as a distinct species by Rivas in 1945. The species was discovered in Florida by R.W. Harrington and Rivas in 1958. Harrington became the most prominent student of this fish, describing the self-fertilizing hermaphroditism unique to this species, as well as the male gender induced by incubation and rearing temperature manipulations (1967, 1968). Also, he and K.D. Kallman provided the first evidence for the homozygosity of the species through 39 tissue transplants among siblings (Kallman and Harrington 1968). R. marmoratus has been used as a subject for carcinogenicity studies (Koenig and Chasar 1984). Other studies have explored the relationship between homozygosity in this species and developmental stability through the examination of meristic characteristics (Swain and Lindsey 1985a, b, Harrington and Crossman 1976, Lindsey and Harrington, 1971). Embryological and developmental studies have included embryonic repair (Park and Yi 1989), skeletal development (Lee and Park 1989), and development of photoreceptors (Ali et al 1988). Current work has focused on the ecology of the species (Davis et al 1990, Taylor et al 1995), the comparisons of the fitness of different clones under different developmental and environmental conditions, and the role of rare males in natural populations (Turner et al 1991, Lubinski et al 1995). Also, phylogenetic studies using mtDNA are in progress by Thomas Dowling to determine the geographic origin of this widely dispersed species. This work may provide insight into the origins of self- fertilization by making comparisons with closely related sexual species possible. The species has also been used in toxicological studies (Davis 1986, 1988) Davis has proposed that the apparent dependence of this species upon mangrove swamps may make it useful indicator of the overall health of mangrove ecosystems (Davis et al 1995). Geographic range: Rivulus marmoratus has been found in southeaster Brazil, near Rio de Janeiro, Venezuela (Taphorn 1980), Nicaragua, Guatemala , Belize, both mainland and on the barrier islands, Yucatan, and southern Florida, as far north as Vero Beach on the Atlantic coast. It seems likely that the species range is continuous between Brazil and Florida, so that gaps are the result of incomplete sampling rather than breaks in the range. R. marmoratus is also found throughout the Caribbean islands, including the Florida Keys, Tortugas, Cuba, the Bahamas, Isle of Pines, Sto. Domingo, Puerto Rico, St. Maarten, Grand Cayman, Jamaica, Curacao, Aruba, and Bonaire. This range is complementary to the range of other Rivulus species, although associations with these 4 species are rare to non-existent. Habitat: Rivulus marmoratus is typically found in coastal mangrove swamps. Specimens have been collected across a wide range of salinities (0-68%), temperatures (7-30° C), and in water containing low dissolved oxygen and high levels of hydrogen sulfide from the decomposing mangral. Often, individuals are found emersed in detritus or leaf litter, likely stranded as temporal pools dried during low tides (Davis et al 1990). The species particularly favors the burrows of land crabs (Cardisoma or Ucides), though they have been recorded in shallow depression such as tires tracks, and have even been collected in numbers inside emergent rotting logs. There are also reports of individuals collected on mangrove leaves in the canopy and even flipping along the ground 100 m from the nearest water source (Huehner et al 1985). General biology: The species is generally a marbled brown and gray with a distinct caudal peduncle ocellus (hence the synonym R. ocellatus). Maximum size is approximately
Recommended publications
  • Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
    Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy.
    [Show full text]
  • Tie-Up Cycles in Long-Term Mating. Part I: Theory
    challenges Article Tie-Up Cycles in Long-Term Mating. Part I: Theory Lorenza Lucchi Basili 1,† and Pier Luigi Sacco 2,3,*,† 1 Independent Researcher, 20 Chestnut Street, Cambridge, MA 02139, USA; [email protected] 2 Department of Romance Languages and Literatures, Harvard University, Boylston Hall, Cambridge, MA 02138, USA 3 Department of Comparative Literature and Language Sciences, IULM University, via Carlo Bo, 1, Milan 20143, Italy * Correspondence: [email protected]; Tel.: +1-617-496-0486 † These authors contributed equally to this work. Academic Editor: Palmiro Poltronieri Received: 26 February 2016; Accepted: 26 April 2016; Published: 3 May 2016 Abstract: In this paper, we propose a new approach to couple formation and dynamics that abridges findings from sexual strategies theory and attachment theory to develop a framework where the sexual and emotional aspects of mating are considered in their strategic interaction. Our approach presents several testable implications, some of which find interesting correspondences in the existing literature. Our main result is that, according to our approach, there are six typical dynamic interaction patterns that are more or less conducive to the formation of a stable couple, and that set out an interesting typology for the analysis of real (as well as fictional, as we will see in the second part of the paper) mating behaviors and dynamics. Keywords: sexual strategies; emotional attachment; mating; couple formation and dynamics; Tie-Up; Active vs. Receptive Areas; frustration and reward; Tie-Up Cycle; flow inversion 1. Introduction The process of reproductive mating is a clear example of a complex socio-biological phenomenon, of paramount evolutionary importance.
    [Show full text]
  • ZOO 435 Lecture - General Characteristics of Extant Birds
    ZOO 435 Lecture - General Characteristics of Extant Birds Forelimbs are wings (in all birds); most can fly Feathers and leg scales (epidermal structures) No sweat glands Uropygial gland present in most Rudimentary pinna (fleshy ear) Skeleton fully ossified; air sacs in bones; strutting for strength Cervical vertebrae have saddle-shaped articular surface – very flexible Single occipital condyle (flexible) Jaws covered by beak (keratinized sheath) No teeth Well developed brain and nervous system Optic lobes and cerebellum very well-developed Excellent eyesight – can see color, UV, and polarized light o Golden Eagle can see a rabbit two miles away; 1500 feet for people Poor sense of taste and smell (with some exceptions) 12 pairs of cranial nerves (just like mammals) 4-chambered heart; Right aortic arch (IV) persists Reduced renal portal system (Blood from the posterior part of the body flows into the renal portal veins, which pass into the caudal vena cava. The renal portal system is found only in fishes, amphibians, reptiles and birds. Thus, mammals have no renal portal system. All that remains in mammals is the azygous vein, which is an unpaired vein that drains most of the intercostal space on both sides of the mammalian thorax.) Nucleated red blood cells Crop – diverticulum of the esophagus (allows ingestion of food which can be stored until a safe place is found for digestion) Proventriculus – distal portion of the stomach (closer to mouth); initiates digestion; Ventriculus (gizzard) – proximal portion of the stomach (farther from mouth); muscular walls to grind and crush, often aided by sand or gravel Air sacs among viscera and in skeleton Voice box = syrinx; located at proximal end of trachea, at junction with bronchi Cloaca; no bladder; semi-solid urine; nitrogenous waste = uric acid Female with only left ovary and oviduct (exceptions, e.g.
    [Show full text]
  • Reproduction Methods
    1336 Chapter 43 | Animal Reproduction and Development fertilization. Seahorses, like the one shown in Figure 43.1, provide an example of the latter. Following a mating dance, the female lays eggs in the male seahorse’s abdominal brood pouch where they are fertilized. The eggs hatch and the offspring develop in the pouch for several weeks. 43.1 | Reproduction Methods By the end of this section, you will be able to do the following: • Describe advantages and disadvantages of asexual and sexual reproduction • Discuss asexual reproduction methods • Discuss sexual reproduction methods Animals produce offspring through asexual and/or sexual reproduction. Both methods have advantages and disadvantages. Asexual reproduction produces offspring that are genetically identical to the parent because the offspring are all clones of the original parent. A single individual can produce offspring asexually and large numbers of offspring can be produced quickly. In a stable or predictable environment, asexual reproduction is an effective means of reproduction because all the offspring will be adapted to that environment. In an unstable or unpredictable environment asexually-reproducing species may be at a disadvantage because all the offspring are genetically identical and may not have the genetic variation to survive in new or different conditions. On the other hand, the rapid rates of asexual reproduction may allow for a speedy response to environmental changes if individuals have mutations. An additional advantage of asexual reproduction is that colonization of new habitats may be easier when an individual does not need to find a mate to reproduce. During sexual reproduction the genetic material of two individuals is combined to produce genetically diverse offspring that differ from their parents.
    [Show full text]
  • Human Mating Strategies Human Mating Strategies
    Human Mating Strategies Human Mating Strategies As descendants of a long line of successful maters, modern humans have inherited the mating strategies that led to their forebear’s success. These include long-term mating, short-term mating, and mixed mating strategies. This article presents empirical evi- dence supporting evolution-based hypotheses about the complexities of these mating strategies, which differ substantially for men and women. array of adaptations specifically dedicated to the David M. Buss, Professor, task of mating. Department of Psychology, Nowhere do people have an equal desire to mate University of Texas, Austin with all people. Everywhere, some people are pre- ferred as mates, others shunned. Desires are central to all facets of mating. They determine who we are attracted to, and who is attracted to us. They influ- ence which attraction tactics will be successful (those that fulfill desires) and which attraction tac- tics will fail (those that violate desires). Successful mate retention tactics involve continuing to provide resources that fulfill the desires of a mate. Failure to Perhaps no adaptive domain is more central to re- fulfill these desires causes breakup and divorce. At production than mating. Those in our evolutionary every step of the mating process, from mate selec- past who failed to mate failed to become ancestors. tion to mate expulsion, desires determine the Modern humans are all descendants of a long and ground rules. unbroken line of ancestors who succeeded in the complex and sometimes circuitous tasks involved in Sexual Selection and Parental Investment mating. As their descendants, modern humans have Although Charles Darwin (1859) recognized that inherited the adaptations that led to the success of survival was central to the evolutionary process, their ancestors.
    [Show full text]
  • Reproductive Aging and Mating: the Ticking of the Biological Clock in Female Cockroaches
    Reproductive aging and mating: The ticking of the biological clock in female cockroaches Patricia J. Moore* and Allen J. Moore School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom Edited by David B. Wake, University of California, Berkeley, CA, and approved June 5, 2001 (received for review March 30, 2001) Females are expected to have different mating preferences be- reproductive state? Few empirical studies have addressed cause of the variation in costs and benefits of mate choice both these questions. Lea et al. (15) present evidence that the between females and within individual females over a lifetime. consistency of mate preference in midwife toads, presumably Workers have begun to look for, and find, the expected variation reflecting a high motivation to mate, is greatest in ovulating among females in expressed mating preferences. However, vari- females. Kodric-Brown and Nicoletto (16) find that older ation within females caused by changes in intrinsic influences has female guppies are less choosy than when they are younger not been examined in detail. Here we show that reproductive even if still virgin. Likewise, Gray (17) demonstrated that older aging caused by delayed mating resulted in reduced choosiness by female house crickets show no significant preference for the female Nauphoeta cinerea, a cockroach that has reproductive calls of attractive males compared with young females. cycles and gives live birth. Male willingness to mate was unaf- An essential factor in considering the effect of reproductive fected by variation in female age. Females who were beyond the state on the expression of female mate choice is to show that in optimal mating age, 6 days postadult molt, required considerably fact there is variation in the costs associated with mate choice less courtship than their younger counterparts.
    [Show full text]
  • REVIEW Physiological Dependence on Copulation in Parthenogenetic Females Can Reduce the Cost of Sex
    ANIMAL BEHAVIOUR, 2004, 67, 811e822 doi:10.1016/j.anbehav.2003.05.014 REVIEW Physiological dependence on copulation in parthenogenetic females can reduce the cost of sex M. NEIMAN Department of Biology, Indiana University, Bloomington (Received 6 December 2002; initial acceptance 10 April 2003; final acceptance 27 May 2003; MS. number: ARV-25) Despite the two-fold reproductive advantage of asexual over sexual reproduction, the majority of eukaryotic species are sexual. Why sex is so widespread is still unknown and remains one of the most important unanswered questions in evolutionary biology. Although there are several hypothesized mechanisms for the maintenance of sex, all require assumptions that may limit their applicability. I suggest that the maintenance of sex may be aided by the detrimental retention of ancestral traits related to sexual reproduction in the asexual descendants of sexual taxa. This reasoning is based on the fact that successful reproduction in many obligately sexual species is dependent upon the behavioural, physical and physiological cues that accompany sperm delivery. More specifically, I suggest that although parthenogenetic (asexual) females have no need for sperm per se, parthenogens descended from sexual ancestors may not be able to reach their full reproductive potential in the absence of the various stimuli provided by copulatory behaviour. This mechanism is novel in assuming no intrinsic advantage to producing genetically variable offspring; rather, sex is maintained simply through phylogenetic constraint. I review and synthesize relevant literature and data showing that access to males and copulation increases reproductive output in both sexual and parthenogenetic females. These findings suggest that the current predominance of sexual reproduction, despite its well-documented drawbacks, could in part be due to the retention of physiological dependence on copulatory stimuli in parthenogenetic females.
    [Show full text]
  • Courtship & Mating Reproduction in Insects
    Reproduction Courtship & Mating in Insects • How do the sexes find each other? – Light – Swarming (male only/ female only) – Leks (male aggregations) • Defend territory against males • Court arriving females – Pheromones What do they do once they find each other? Courtship • Close range intersexual behavior that induces sexual receptivity before and during mating. • Allows mate choice among and within species. 1 Types of Courtship • Visual displays Nuptial Gifts • Ritualized movements • 3 forms • Sound production – Cannibalization of males • Tactile stimulation – Glandular product • Nuptial gifts – Nuptial gift • Prey • Salt, nutrients Evolution of nuptial feeding Sexual Cannibalization • Female advantages • Rather extreme – Nutritional benefit • Male actually does not – Mate choice (mate with good provider) willingly give himself • Male advantages up… – Helping provision/produce his offspring – Where would its potential – Female returns sperm while feeding rather than reproductive benefit be? mating with someone else • Do females have • Male costs increased reproductive – Capturing food costs energy and incurs predation success? risk – Prey can be stolen and used by another male. 2 Glandular gifts Nuptial gifts • Often part of the spermatophore (sperm transfer unit) – Occupy female while sperm is being transferred – Parental investment by male • Generally a food item (usually prey) • Also regurgitations (some flies) • But beware the Cubic Zirconia, ladies Sexual selection Types of sexual selection • Intrasexual selection – Contest competition
    [Show full text]
  • Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer
    vol. 165, no. 6 the american naturalist june 2005 Sex-Specific Spawning Behavior and Its Consequences in an External Fertilizer Don R. Levitan* Department of Biological Science, Florida State University, a very simple way—the timing of gamete release (Levitan Tallahassee, Florida 32306-1100 1998b). This allows for an investigation of how mating behavior can influence mating success without the com- Submitted October 29, 2004; Accepted February 11, 2005; Electronically published April 4, 2005 plications imposed by variation in adult morphological features, interactions within the female reproductive sys- tem, or post-mating (or pollination) investments that can all influence paternal and maternal success (Arnqvist and Rowe 1995; Havens and Delph 1996; Eberhard 1998). It abstract: Identifying the target of sexual selection in externally also provides an avenue for exploring how the evolution fertilizing taxa has been problematic because species in these taxa often lack sexual dimorphism. However, these species often show sex of sexual dimorphism in adult traits may be related to the differences in spawning behavior; males spawn before females. I in- evolutionary transition to internal fertilization. vestigated the consequences of spawning order and time intervals One of the most striking patterns among animals and between male and female spawning in two field experiments. The in particular invertebrate taxa is that, generally, species first involved releasing one female sea urchin’s eggs and one or two that copulate or pseudocopulate exhibit sexual dimor- males’ sperm in discrete puffs from syringes; the second involved phism whereas species that broadcast gametes do not inducing males to spawn at different intervals in situ within a pop- ulation of spawning females.
    [Show full text]
  • Needham Notes
    Lesson 26 Lesson Outline: Exercise #1 - Basic Functions Exercise #2 - Phylogenetic Trends Exercise #3 - Case Studies to Compare • Reproductive Strategies- Energy Partitioning • External versus Internal Fertilization • Sexual Dimorphism o Functional Characteristics o Aids to Identification o Copulatory Organs • Timing - Copulation, Ovulation, Fertilization, Development Objectives: Throughout the course what you need to master is an understanding of: 1) the form and function of structures, 2) the phylogenetic and ontogenetic origins of structures, and 3) the extend to which various structures are homologous, analogous and/or homoplastic. At the end of this lesson you should be able to: Describe the advantages and disadvantages of internal and external fertilization Describe sexual dimorphism and the selection pressures that lead to it Describe the trends seen in the design of copulatory organs Describe the various forms of reproductive strategy for delaying development of the fertilized egg and the selective advantage of them References: Chapter 15: 351-386 Reading for Next Lesson: Chapter 16: 387- 428 Exercise #1 List the basic functions of the urogenital system: The urinary system excretes the waste products of cellular digestion, ions, amino acids, salts, etc. It also plays a key role in water balance along with numerous other structures in different species living in different environments (i.e. gills, skin, salt glands). The primary function of the system is to give rise to offspring, - to reproduce. Exercise #2 Describe the evolutionary trends that we see in the urogenital systems of the different vertebrate groups: The phylogenetic trends that we see throughout the chordates were covered in detail in lectures (lecture 31 and 32) and are summarized schematically in the next figures: Exercise #3 – Comparisons – Case 1 Reproductive Strategies - Energy Partitioning Some would argue that the primary reason that organisms exist is to reproduce and make more organisms.
    [Show full text]
  • Reproductive Ecology & Sexual Selection
    Reproductive Ecology & Sexual Selection REPRODUCTIVE ECOLOGY REPRODUCTION & SEXUAL SELECTION • Asexual • Sexual – Attraction, Courtship, and Mating – Fertilization – Production of Young The Evolutionary Enigma of Benefits of Asex Sexual Reproduction • Sexual reproduction produces fewer reproductive offspring than asexual reproduction, a so-called reproductive handicap 1. Eliminate problem to locate, court, & retain suitable mate. Asexual reproduction Sexual reproduction Generation 1 2. Doubles population growth rate. Female Female 3. Avoid “cost of meiosis”: Generation 2 – genetic representation in later generations isn't reduced by half each time Male 4. Preserve gene pool adapted to local Generation 3 conditions. Generation 4 Figure 23.16 The Energetic Costs of Sexual Reproduction Benefits of Sex • Allocation of Resources 1. Reinforcement of social structure 2. Variability in face of changing environment. – why buy four lottery tickets w/ the same number on them? Relative benefits: Support from organisms both asexual in constant & sexual in changing environments – aphids have wingless female clones & winged male & female dispersers – ciliates conjugate if environment is deteriorating Heyer 1 Reproductive Ecology & Sexual Selection Simultaneous Hermaphrodites TWO SEXES • Advantageous if limited mobility and sperm dispersal and/or low population density • Guarantee that any member of your species encountered is the • Conjugation “right” sex • Self fertilization still provides some genetic variation – Ciliate protozoans with + & - mating
    [Show full text]
  • Mating Preferences Might Evolve by Natural Selection. If Mating Mate
    A GENERAL MODEL OF SEXUAL AND NATURAL SELECTION P. O'DONALD Department of Zoology, University College of North Wales, bangor Received28.xii.66 1.INTRODUCTION FISHERin The Genetical Theory of JVatural Selection (1930) described how mating preferences might evolve by natural selection. If mating behaviour varies among different genotypes, some individuals may have an hereditary disposition to mate with others having particular characteristics. Usually of course it is the females who choose the males and their choice is determined by the likelihood that the males' display will release their mating responses. If some females prefer to mate with those males that have characteristics advantageous in natural selection, then the genotypes that determine such matings will also be selected: the offspring will carry both the advantageous geno- types and the genotypes of the mating preference. Once the mating preference is established, it will itself add to the selective advantage of the preferred genotypes: a "runaway process" as Fisher called it develops. In a paper in Heredity (1963) I described a mathematical model of this type of selection. In the simplest case two loci must be involved: one locus determines the preferred character and the other the mating preference. If there are only two alleles segregating at each locus, ten different genotypes can occur if the loci are linked and nine if they are not. If they are sex-linked, there are i possible genotypes. I derived finite difference equations giving the frequencies of the genotypes in terms of parameters describing the degree of dominance of the preferred genotypes and the recombination fractions of the loci.
    [Show full text]