Methane Number Control of Fuel Gas Supply System Using Combined Cascade/Feed-Forward Control

Total Page:16

File Type:pdf, Size:1020Kb

Methane Number Control of Fuel Gas Supply System Using Combined Cascade/Feed-Forward Control Journal of Marine Science and Engineering Article Methane Number Control of Fuel Gas Supply System Using Combined Cascade/Feed-Forward Control Soon-kyu Hwang 1 and Byung-gun Jung 2,* 1 Process Engineering Department, MODEC Offshore Production System, 9 North Buona Vista Drive, Singapore 138588, Singapore; [email protected] 2 Department of Marine System Engineering, Korea Maritime & Ocean University, Busan 49112, Korea * Correspondence: [email protected]; Tel.: +82-51-410-4269 Received: 4 April 2020; Accepted: 25 April 2020; Published: 28 April 2020 Abstract: Liquefied natural gas began to attract attention as a ship fuel to reduce environmental pollution and increase energy efficiency. During this period, highly efficient internal combustion engines emerged as the new propulsion system instead of steam turbines. However, Otto-cycle engines must use fuel that meets the methane number that was given by the engine makers. The purpose of this study was to develop a system configuration and a control method of methane number adjustment using combined cascade/feed-forward controllers for marine Otto-cycle engines to improve reference tracking and the disturbance rejection. The main principle involves controlling the downstream gas temperature of the fuel gas supply system to meet the required methane number. Three controllers are used in the combined cascade/feed-forward control for adjusting the downstream of the gas temperature: the cascade loop has two controllers and the feed-forward has one controller. The two controllers in the cascade loop are designed with proportional–integral (PI) controllers. The remaining controller is based on feed-forward control theory. A simulation was conducted to verify the efficacy of the proposed method, focusing on the disturbance rejection and set-point tracking, in comparison with a single PI controller, a single PI controller with feed-forward, and cascade control. Keywords: methane number; PI controller; cascade control; feed-forward control; natural gas; disturbance rejection 1. Introduction The International Maritime Organization (IMO) has adopted regulations to address the emission of air pollutants from ships and has implemented mandatory energy efficiency measures to reduce the emissions of greenhouse gases from shipping, under the International Convention for the Prevention of Pollution from Ships (MARPOL). First, sulphur oxides (SOx) and nitrogen oxides (NOx) were reduced as a solution to air pollution. Second, the energy efficiency design index (EEDI) was made mandatory for new ship’ construction as adopted by MARPOL [1–3]. In other words, it will increase energy efficiency to reduce environmental pollution. The final goal of these two items is to reduce pollutants and minimize fuel use. For that reason, liquefied natural gas (LNG) began to attract attention as a ship fuel [4,5]. During this period, various gas engines using natural gas (NG) for marine purpose emerged as new propulsion systems with high efficiency and low operational costs instead of steam turbines [6]. In other words, the Otto-cycle engine, which is one of the gas engine types, has begun to replace the existing ship propulsion system, the steam turbines. Figure1 shows the concept of the Otto-cycle engines. During compression stroke in the Otto-cycle engines, low-pressure fuel gas is injected from the middle of the cylinder liner to perform the compression stroke in the premixed state with the scavenging air. J. Mar. Sci. Eng. 2020, 8, 307; doi:10.3390/jmse8050307 www.mdpi.com/journal/jmse J. Mar. Sci. Eng. 2020, 8, 307 2 of 16 J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 2 of 16 scavengingThen, at theair. endThen, of at the the compression end of the compression stroke, combustion stroke, proceedscombustion by injectingproceeds theby injecting fuel for the the ignition fuel forthrough the igniti fuelon through valves installed fuel valve ons theinstalled upper on part the of upper the cylinder part of head.the cylinder head. FigureFigure 1. The 1. The concept concept of the of theOtto Otto-cycle-cycle engines engines [7]. [7]. However,However, the the Otto Otto-cycle-cycle engine engine has has the the disadvantage disadvantage of ofhaving having to tomeet meet the the proper proper methane methane numbernumber (MN) (MN) that that was was given given by by the the engine engine make makers.rs. On On average, values ofof 60–8060–80 are are provided. provided The. The MN MNdescribes describes the the ability ability of of NG NG to to withstand withstand compression compression before before ignition. ignition. Pure Pure methane methane has has a a MN MN of of 100, 100,and and pure pure hydrogen hydrogen has ahas MN a ofMN 0. Fuelsof 0. withFuels lower with methane lower methane numbers numbers pose performance pose performance problems for problemsfuel gas for supply fuel gas systems supply (FGSSs) systems due (FGSS to combustions) due to combustion knocking knocking caused by caused higher by amounts higher amounts of ethane, of propane,ethane, propane, and heavier and hydrocarbons heavier hydrocarbons [8]. Major causes[8]. Major of low causes MN are of LNG low ageing,MN are temperature LNG ageing, rise of temperaturethe cargo tank rise inside,of the cargo and low tank MN inside LNG, and forced low vaporization MN LNG forced [9]. A vaporization list of the LNG [9] composition. A list of the andLNG MN compositionavailable fromand MN some available LNG terminals from some is provided LNG terminals in Table is1. provided With the lowin Table MN of1. With LNG the supplied low MN from of theLNG LNG supplied terminal, from it isthe highly LNG likelyterminal, that theit is MN highly will likely be lower that due the toMN the will increase be lower in the due temperature to the increaseof the in cargo the tanktemperature and LNG of ageing the cargo while tank sailing, and which LNG meansageingthat while a system sailing, capable which ofmeans controlling that athe systemMN iscapable needed. of controlling the MN is needed. Table 1. Liquefied natural gas (LNG) compositions and methane number (MN) at some LNG terminals. Table 1. Liquefied natural gas (LNG) compositions and methane number (MN) at some LNG terminals. Description A B C Description Methane (mol.%)A 89.60 86.26B 81.39 C Ethane (mol.%) 5.31 12.44 Methane (mol.%) 89.60 88.236.26 81.39 Propane (mol.%) 3.00 3.29 3.51 Ethane (mol.%) 5.31 8.23 12.44 Butane (mol.%) 1.47 0.96 0.64 Propane (mol.%) 3.00 3.29 3.51 Nitrogen (mol.%) 0.61 1.26 2.02 Butane (mol.%) MN1.47 71.10 069.30.96 67.40 0.64 Nitrogen (mol.%) 0.61 1.26 2.02 MN 71.10 69.30 67.40 The primary contribution of this study is the development of a system configuration and a methane number adjustment control method for marine Otto-cycle engines to improve reference The primary contribution of this study is the development of a system configuration and a tracking as well as the disturbance rejection with combined cascade/feed-forward controllers. First of methane number adjustment control method for marine Otto-cycle engines to improve reference all, we suggest how to adjust the MN using existing equipment in current LNG carriers (LNGCs) and tracking as well as the disturbance rejection with combined cascade/feed-forward controllers. First of LNG-fueled ships (LFSs). Some research has focused on calculation methods and test methods of the all, we suggest how to adjust the MN using existing equipment in current LNG carriers (LNGCs) and methane number. Partho et al. [8] developed a prediction model of the natural gas methane number. LNG-fueled ships (LFSs). Some research has focused on calculation methods and test methods of the Martin et al. [10] studied methane number test of the alternative gaseous fuels. However, a method for methane number. Partho et al. [8] developed a prediction model of the natural gas methane number. controlling the MN in ships’ Otto-cycle engines was needed. The method focusing on the fact that each Martin et al. [10] studied methane number test of the alternative gaseous fuels. However, a method gas has a different boiling point was applied in this paper in order to control the MN of the natural gas. for controlling the MN in ships’ Otto-cycle engines was needed. The method focusing on the fact that each gas has a different boiling point was applied in this paper in order to control the MN of the natural gas. J. Mar. Sci. Eng. 2020, 8, 307 3 of 16 Then, appropriate control methods could be applied in MN control systems. Feed-forward control and cascade control are considered two of the proper control methods. Feed-forward control is used to ensure constant control performance when a disturbance affects a process under feedback control. The weak point of feedback control is that a process variable (PV) is necessary before a manipulated variable (MV) change is taken when a disturbance affects a process. The application of feed-forward control is sufficient to compensate for this weakness. However, the performance of feed-forward control is limited by model uncertainty [11]. In practice, the disturbance rejection and accuracy of the system response are important. Cascade control was adapted to show how to use multiple process variables to improve the response to a disturbance and reference tracking. Several studies focused on control methods using cascade control and feed-forward control. Lee et al. [12] suggested the use of internal model controller (IMC) principles as a controller tuning method for both inner and outer loop controllers in cascade control. Kaya [13,14] proposed the application of the Smith predictor scheme in a long time delay system. Some researchers [15–18] studied feed-forward control with a feedback control system using advanced tuning methods such as robust control.
Recommended publications
  • Combustion and Heat Release Characteristics of Biogas Under Hydrogen- and Oxygen-Enriched Condition
    energies Article Combustion and Heat Release Characteristics of Biogas under Hydrogen- and Oxygen-Enriched Condition Jun Li 1, Hongyu Huang 2,*, Huhetaoli 2, Yugo Osaka 3, Yu Bai 2, Noriyuki Kobayashi 1,* and Yong Chen 2 1 Department of Chemical Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan; [email protected] 2 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; [email protected] (H.); [email protected] (Y.B.); [email protected] (Y.C.) 3 Faculty of Mechanical Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan; [email protected] * Correspondence: [email protected] (H.H.); [email protected] (N.K.); Tel.: +86-20-870-48394 (H.H.); +81-52-789-5428 (N.K.) Received: 10 May 2017; Accepted: 20 July 2017; Published: 13 August 2017 Abstract: Combustion and heat release characteristics of biogas non-premixed flames under various hydrogen-enriched and oxygen-enriched conditions were investigated through chemical kinetics simulation using detailed chemical mechanisms. The heat release rates, chemical reaction rates, and molar fraction of all species of biogas at various methane contents (35.3–58.7%, mass fraction), hydrogen addition ratios (10–50%), and oxygen enrichment levels (21–35%) were calculated considering the GRI 3.0 mechanism and P1 radiation model. Results showed that the net reaction rate of biogas increases with increasing hydrogen addition ratio and oxygen levels, leading to a higher net heat release rate of biogas flame. Meanwhile, flame length was shortened with the increase in hydrogen addition ratio and oxygen levels.
    [Show full text]
  • Energy and the Hydrogen Economy
    Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself.
    [Show full text]
  • Hydrogen-Enriched Compressed Natural Gas (HCNG)
    Year 2005 UCD—ITS—RR—05—29 Hydrogen Bus Technology Validation Program Andy Burke Zach McCaffrey Marshall Miller Institute of Transportation Studies, UC Davis Kirk Collier Neal Mulligan Collier Technologies, Inc. Institute of Transportation Studies ◊ University of California, Davis One Shields Avenue ◊ Davis, California 95616 PHONE: (530) 752-6548 ◊ FAX: (530) 752-6572 WEB: http://its.ucdavis.edu/ Hydrogen Bus Technology Validation Program Andy Burke, Zach McCaffrey, Marshall Miller Institute of Transportation Studies, UC Davis Kirk Collier, Neal Mulligan Collier Technologies, Inc. Technology Provider: Collier Technologies, Inc. Grant number: ICAT 01-7 Grantee: University of California, Davis Date: May 12, 2005 Conducted under a grant by the California Air Resources Board of the California Environmental Protection Agency The statements and conclusions in this Report are those of the grantee and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products 2 Acknowledgments Work on this program was funded by the Federal Transit Administration, the California Air Resources Board, and the Yolo-Solano Air Quality Management District. This Report was submitted under Innovative Clean Air Technologies grant number 01-7 from the California Air Resources Board. 3 Table of Contents Abstract………………………………………………………………………………...................6 Executive Summary…………………………………………………………………...................7
    [Show full text]
  • 2002-00201-01-E.Pdf (Pdf)
    report no. 2/95 alternative fuels in the automotive market Prepared for the CONCAWE Automotive Emissions Management Group by its Technical Coordinator, R.C. Hutcheson Reproduction permitted with due acknowledgement Ó CONCAWE Brussels October 1995 I report no. 2/95 ABSTRACT A review of the advantages and disadvantages of alternative fuels for road transport has been conducted. Based on numerous literature sources and in-house data, CONCAWE concludes that: · Alternatives to conventional automotive transport fuels are unlikely to make a significant impact in the foreseeable future for either economic or environmental reasons. · Gaseous fuels have some advantages and some growth can be expected. More specifically, compressed natural gas (CNG) and liquefied petroleum gas (LPG) may be employed as an alternative to diesel fuel in urban fleet applications. · Bio-fuels remain marginal products and their use can only be justified if societal and/or agricultural policy outweigh market forces. · Methanol has a number of disadvantages in terms of its acute toxicity and the emissions of “air toxics”, notably formaldehyde. In addition, recent estimates suggest that methanol will remain uneconomic when compared with conventional fuels. KEYWORDS Gasoline, diesel fuel, natural gas, liquefied petroleum gas, CNG, LNG, Methanol, LPG, bio-fuels, ethanol, rape seed methyl ester, RSME, carbon dioxide, CO2, emissions. ACKNOWLEDGEMENTS This literature review is fully referenced (see Section 12). However, CONCAWE is grateful to the following for their permission to quote in detail from their publications: · SAE Paper No. 932778 ã1993 - reprinted with permission from the Society of Automotive Engineers, Inc. (15) · “Road vehicles - Efficiency and emissions” - Dr. Walter Ospelt, AVL LIST GmbH.
    [Show full text]
  • Material Safety Data Sheet
    SAFETY DATA SHEET EFFECTIVE JUNE 2016 SECTION 1 – PRODUCT & COMPANY IDENTIFICATION Product Name: Commercial Odorized Propane Chemical Name: Propane (C3H8) Chemical Family: Petroleum Hydrocarbon Common Names: Liquefied Petroleum Gas, LP-Gas, LPG, Bottle Gas Intended Use: Propane is a liquid fuel Distributor: Campora Propane Service, PO Box 31717 Stockton, CA 95213 Emergency Response: CHEMTREC (800) 424-9300 General Information: (209) 941-2994 SECTION 2 – CHEMICAL HAZARD CLASSIFICATION & WARNING INFORMATION Fire Hazard NFPA CLASSES: 1-Slight 2-Moderate 3-Serious Health Hazard Reactivity 4-Severe Physical hazards Flammable gases Category 1 Gases under pressure Liquefied gas Health hazards Acute toxicity, inhalation Category 4 Germ cell mutagenicity Category 1B Carcinogenicity Category 1A Reproductive toxicity Category 1A Specific target organ toxicity, repeated Category 2 exposure OSHA defined hazards Not classified. Label Elements Signal Word Danger Hazard Statement Propane (also called LPG-Liquefied Petroleum Gas or LP-Gas) is a liquid fuel stored under pressure. In most systems, propane is vaporized to a gas before it leaves the tank. Propane is highly flammable when mixed with air (oxygen) and can be ignited by many sources, including open flames, smoking materials, electrical sparks, and static electricity. Severe “freeze burn” or frostbite can result if propane liquid comes in contact with your skin. Extremely flammable gas. Harmful if inhaled. May cause genetic defects. May cause cancer. May damage fertility or the unborn child. May cause damage to Blood through prolonged or repeated exposure. May cause cryogenic burns or injury. Propane is a simple asphyxiant. Precautionary statement General Read and follow all Safety Data Sheets (SDS’S) before use.
    [Show full text]
  • Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions
    Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks, W.C. Turkenburg Depanrnent of Science,Technology and Society University of Utrecht Oudegracht320, NL-351 1 PL Utrecht, The Netherlands R.H. Williams Center for Energy and Environmental Studies Princeton University Princeton, New Jersey08544, USA June 1991 Abstract. New energy technologies are needed to limit CO2 emissions and the detrimental effects of global warming. In this article we describe a process which produces a low-carbon gaseousfuel from coal. Synthesis gas from a coal gasifier is shifted to a gas mixture consisting mainly of H2 and CO2. The CO2 is isolated by a physical absorption process, compressed,and transported by pipeline to a depleted natural gas field where it is injected. What remains is a gaseousfuel consisting mainly of hydrogen. We describe two applications of this fuel. The first involves a combined cycle power plant integrated with the coal gasifier, the shift reactor and the CO2 recovery units. CO2 recovery and storage will increase the electricity production cost by one third. The secondprovides hydrogen or a hydrogen-rich fuel gas for distributed applications, including transportation; it is shown that the fuel can be produced at a cost comparable to projected costs for gasoline. A preliminary analysis reveals that all components of the process described here are in such a phase of development that the proposed technology is ready for demonstration. ~'> --. ~'"' .,.,""~ 0\ ~ 0\0 ;.., ::::. ~ ~ -.., 01) §~ .5~ c0 ~.., ~'> '" .~ ~ ..::. ~ ~ "'~'" '" 0\00--. ~~ ""00 Q....~~ '- ~~ --. ~.., ~ ~ ""~ 0000 .00 t¥") $ ~ .9 ~~~ .- ..~ c ~ ~ ~ .~ O"Oe) """1;3 .0 .-> ...~ 0 ~ ,9 u u "0 ...~ --.
    [Show full text]
  • Perspective of Msw to Power Generation Through Gas Engine
    PERSPECTIVE OF MSW TO POWER GENERATION THROUGH GAS ENGINE DEZHEN. CHEN*, MIN. YANG* *Thermal & Environmental Engineering Institute, Mechanical Engineering College, Tongji University, Shanghai, 200092, China. E-mail: [email protected] SUMMARY: In this paper perspective of MSW to power generation through gas engine in China is evaluated. The waste to energy (WtE) plant based on thermal chemical conversion and gas engine technology include four important issues: preparation of MSW materials, reliable gasification or pyrolysis reactors, gas product processing and availability of gas engine. The state of the arts of these issues have been surveyed and the challenge for implementing WtE process based on gas engine technology has been analysed. It has been found that MSW pretreatment machinery is relatively mature; the gas engine products suitable for syngas are also available. While economic and reliable gasifiers and syngas scrubbing systems are very limited and they are the core challenge for implementing WtE process through gas engine. 1. INTRODUCTION Most of municipal solid wastes (MSW) in big cities in China have been safely disposed through landfilling, incineration and other combined technologies. By the end of year of 2015, 60.2 wt.% of the MSW was disposed in landfills, 29.8 wt.% was incinerated and 1.8 wt.% was composted, there was still 8.2 wt.% of MSW piling on their generating sites and remaining untreated (Speciality committee of urban domestic refuse of CAEPI, 2016). Almost all of the incineration plants in China are equipped with boilers to recover heat released during incineration in form of steam for power generation. However in the small cities and countryside where the generation of MSW are less than 600 tonnes per day, setting up new waste to energy (WtE) plants based on incineration and Rankine cycle technology is difficult due to the economic constraints.
    [Show full text]
  • Chapter 38 Liquefied Petroleum Gases
    Color profile: Generic CMYK printer profile Composite Default screen CHAPTER 38 LIQUEFIED PETROLEUM GASES SECTION 3801 3803.2.1.2 Construction and temporary heating. Por- GENERAL table containers are allowed to be used in buildings or 3801.1 Scope. Storage, handling and transportation of lique- areas of buildings undergoing construction or for tempo- fied petroleum gas (LP-gas) and the installation of LP-gas rary heating as set forth in Sections 6.17.4, 6.17.5 and equipment pertinent to systems for such uses shall comply with 6.17.8 of NFPA 58. this chapter and NFPA 58. Properties of LP-gases shall be 3803.2.1.3 Group F occupancies. In Group F occupan- determined in accordance with Appendix B of NFPA 58. cies, portable LP-gas containers are allowed to be used to 3801.2 Permits. Permits shall be required as set forth in Sec- supply quantities necessary for processing, research or tions 105.6 and 105.7. experimentation. Where manifolded, the aggregate Distributors shall not fill an LP-gas container for which a water capacity of such containers shall not exceed 735 permit is required unless a permit for installation has been pounds (334 kg) per manifold. Where multiple mani- issued for that location by the fire code official. folds of such containers are present in the same room, each manifold shall be separated from other manifolds 3801.3 Construction documents. Where a single container is by a distance of not less than 20 feet (6096 mm). more than 2,000 gallons (7570 L) in water capacity or the aggregate capacity of containers is more than 4,000 gallons (15 3803.2.1.4 Group E and I occupancies.
    [Show full text]
  • Review on Opportunities and Difficulties with HCNG As a Future Fuel for Internal Combustion Engine
    Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 4, Number 1 (2014), pp. 79-84 © Research India Publications http://www.ripublication.com/aasa.htm Review on Opportunities and Difficulties with HCNG as a Future Fuel for Internal Combustion Engine Priyanka Goyal1 and S.K. Sharma2 1Amity Institute of Aerospace Engineering, Amity University, Noida. 2Amity School of Engineering & Technology, Amity University, Noida. Abstract Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen blended with natural gas (HCNG) is a viable alternative to pure fossil fuels because of the effective reduction in total pollutant emissions and the increased engine efficiency. This research note is an assessment of hydrogen enriched compressed natural gas usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with hydrogen enriched com-pressed natural gas under various conditions are illustrated. In addition, the difficulties to deploy HCNG are clearly described. Keywords: CNG; HCNG; Hydrogen; Emissions. 1. Introduction In today’s modern world, where new technologies are being introduced, use of transportation energy is increasing rapidly. Fossil fuel, particularly petroleum fuel, isthe major contributor to energy production. Fossil fuel consumption is continuously rising as aresult of population growth in addition to improvements in the standard of living. Increased energy demand requires increased fuel production, thus draining current fossil fuel reserve levels at a faster rate. This has resulted in fluctuating oil prices and supply disruptions.
    [Show full text]
  • Technical Evaluation and Assessment of CNG/LPG Bi-Fuel and Flex-Fuel Vehicle Viability C-ACC-4-14042-01
    May 1994 • NRELffP-425-6544 Technical Eval ·on and Assessment of C !LPG Bi-Fuel and Flex-Fuel V cle Viability J .E. Sinor Consultants, Inc. Niwot, CO •.. •... ···� �=- ·-· ·��-· National Renewable Energy Laboratory 1617• Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Operated by Midwest Research Institute for the U.S. Department of Energy Under Contract No. DE-AC02-83CH)0093_____ _ _ NRELffP-425-6544 • UC Category: 335 • DE94006925 Technical Evaltil*ion··:·:·:·:·:·:·:·: and ·, Assessment of C , /LPG Bi-Fuel and Flex-Fuel Vell�le Viability J J.E. Sinor Consultants, Inc. Niwot, CO technical monitor: C. Colucci NREL �·� .,!!!!!�-· ·� �--­ .. •.·-· ···� National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory operated for the U.S. Department of Energy under contract No. DE-AC02-83CH10093 Prepared under Subcontract No. ACC-4-14042-01 May 1994 Thispub lication was reproducedfrom thebest available camera-readycopy submitted by the subcontractor and received no editorial review at NREL. NOTICE NOTICE: This reportwas prepared as an accountof work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or processdisclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Caterpillar Natural Gas Engines
    CATERPILLAR MINING OIL & GAS NATURAL RAIL MARINE GAS ENGINES ELECTRIC POWER Lower Operating Costs, Proven Performance We’re “all in” on a natural gas-powered future You told us what you want from Caterpillar® engines: fuel flexibility, reduced operating costs and lower emissions. You want to tap into the cost savings of natural gas while retaining the traditional performance and durability of diesel engines. Small wonder: natural gas is abundant, cheap and clean—it fits right in with sustainability trends. Just as important, it is clean burning while providing a real alternative to diesel fuel pricing. And the gas fueling infrastructure is growing. That’s why we are expanding our portfolio of natural gas engines in a variety of applications. We are also extending our technology to customers interested in retrofitting their existing engines. This is a new era where natural gas will be a major fuel source and ringb significant bottom line cost savings to your businesses. Natural Gas Engine Technology Caterpillar is a leader in natural gas technology with thousands of engines operating in the field. We are leveraging our experience and leading technology into other areas. Today, we offer natural gas engines featuring spark ignited and Dynamic Gas Blending technologies. In the future, we will introduce a third technology: high-pressure direct injection (HPDI). In each case, we ensure the right technology is deployed into the right application, fully supporting your goals for performance, safety and reliability. Dynamic Gas Blending Dynamic Gas Blending technology is a proprietary Caterpillar dual fuel technology that uses existing gas engine hardware to allow Caterpillar diesel engines to burn natural gas.
    [Show full text]
  • Worldwide Fuel Charter for Methane-Based Transportation Fuels
    WORLDWIDE FUEL CHARTER first edition METHANE-BASED TRANSPORTATION FUELS FOR COPIES, PLEASE CONTACT ACEA, ALLIANCE, EMA OR JAMA OR VISIT THEIR WEBSITES. 28 OCTOBER 2019 Japan Automobile Alliance of Truck and Engine Manufacturers Association European Automobile Automobile Manufacturers Manufacturers Association Jidosha Kaikan Manufacturers Association 803 7th Street, N.W., Suite 300 333 West Wacker Drive, Suite 810 1-30, Shiba Daimon 1-Chome Avenue des Nerviens 85 Washington D.C., 20001 Chicago, IL 60606 Minato-ku, Tokyo 105-0012 Japan B-1040 Brussels, Belgium Tel: +1 (202) 326-5500 Tel: +1 (312) 929-1970 Tel: +81-3-5405-6125 Tel: +32 2 732 55 50 Fax: +1 (202) 326-5567 Fax: +1 (312) 929-1975 Fax: +81-3-5405-6136 www.acea.be www.autoalliance.org www.truckandenginemanufacturers.org www.jama.or.jp The Worldwide Fuel Charters are published by the members of the Worldwide Fuel Charter Committee as a service to legis- lators, fuel users, producers and other interested parties around the world. They contain information from sources believed to be reliable; however, the Committee makes no warranty, guarantee, or other representation, express or implied, with respect to the Charters’ sufficiency or fitness for any particular purpose. The Charters impose no obligation on any users or producers of fuel, and they do not prohibit use of any engine or vehicle technology or design, fuel, or fuel quality specifica- tion. They are not intended to, and do not, replace engine and vehicle manufacturers’ fuelling recommendations for their engine and vehicle products. Consumers are encouraged to check their vehicle owner manuals for specific guidance and to compare that guidance with fuel dispenser labels.
    [Show full text]