Review on Opportunities and Difficulties with HCNG As a Future Fuel for Internal Combustion Engine

Total Page:16

File Type:pdf, Size:1020Kb

Review on Opportunities and Difficulties with HCNG As a Future Fuel for Internal Combustion Engine Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 4, Number 1 (2014), pp. 79-84 © Research India Publications http://www.ripublication.com/aasa.htm Review on Opportunities and Difficulties with HCNG as a Future Fuel for Internal Combustion Engine Priyanka Goyal1 and S.K. Sharma2 1Amity Institute of Aerospace Engineering, Amity University, Noida. 2Amity School of Engineering & Technology, Amity University, Noida. Abstract Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen blended with natural gas (HCNG) is a viable alternative to pure fossil fuels because of the effective reduction in total pollutant emissions and the increased engine efficiency. This research note is an assessment of hydrogen enriched compressed natural gas usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with hydrogen enriched com-pressed natural gas under various conditions are illustrated. In addition, the difficulties to deploy HCNG are clearly described. Keywords: CNG; HCNG; Hydrogen; Emissions. 1. Introduction In today’s modern world, where new technologies are being introduced, use of transportation energy is increasing rapidly. Fossil fuel, particularly petroleum fuel, isthe major contributor to energy production. Fossil fuel consumption is continuously rising as aresult of population growth in addition to improvements in the standard of living. Increased energy demand requires increased fuel production, thus draining current fossil fuel reserve levels at a faster rate. This has resulted in fluctuating oil prices and supply disruptions. Rapidly depleting reserves of petroleum and decreasing air quality raise questions about the future [1][2][7]. Alternative fuels such as CNG, HCNG, LPG, LNG, bio-diesel, biogas, hydrogen, ethanol, methanol and di-methyl ether have been tried worldwide. The useof hydrogen as a future fuel for internal combustion (IC) engines is also being considered [2]. 80 Priyanka Goyal & S.K. Sharma Main drivers for introducing Hydrogen Enriched Compressed Natural Gas Blended Fuel for automobiles are to increase IC engine performance and reduction of both local pollutants and emission gases from environments. Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. However, several obstacles have to be overcome before the commercialization of hydrogen as an IC engine fuel for the automotive sector [3]. 1.1 Fuel characteristics of HCNG In an internal combustion engine, the addition of small amount of hydrogen to natural gas which can vary 5-30% by volume, leads to many advantages, because of some particular physical and chemical properties [5]. Xu et al. developed a new HCNG premixed system which was used to blend desired amount of hydrogen into CNG. According to Dalton’s partial pressure law, hydrogen fraction was decided by the partial pressure of these two fuels in HCNG tank [6]. The influence of gas composition on engine behavior can be adequately characterized by Wobbe index. If the Wobbe index remains constant, change in the gas composition will not lead to a noticeable change in the air-fuel ratio and combustion rate [4]. The overall comparison of properties of Hydrogen, CNG, 5% HCNG blend is given in table 1 shows the characteristic values of the HCNG fuels with different hydrogen fractions. Also, these confirm that the properties of HCNG lie in between those of hydrogen and CNG. There are a number of unique features associated with HCNG that make it remarkably well suited in principle to engine applications. Some of the most notable features are: Table 1: Comparison of properties of hydrogen, CNG, and HCNG 5 with gasoline [4] Properties H2 HCNG 5CH4 Gasoline Limits of flammability in air, [vol.%] 4-75 5-35 5-15 1.0-7.6 Stoichiometric composition in air, [vol.%] 34.3:1 22.8 17.2:1 1.76 Minimum energy for ignition in air, [mJ] 0.02 0.21 0.29 0.24 Auto ignition temperature, [K] 858 825 813 501-744 Flame temperature in air, [K ] 2318 2210 2148 2470 Burning velocity in NTP* air, [cms–1] 325 110 45 37-43 Quenching gap in NTP* air, [cm] 0.064 0.152 0.203 0.2 Normalized flame emissivity 1.0 1.5 1.7 1.7 Equivalence ratio flammability limit in 0.1-7.1 0.5-5.4 0.7-4 0.7-3.8 NTP* air Research Octane number 130 - 120 91-100 Methane number 0 76 80 - Composition of CNG: CH4 – 90.2%, C2H6 – 8.5%, C3H8 – 0.6%, N2 – 0.6%, butane – 0.1% *NTP denotes normal temperature (293.15 K) and pressure (1atm) Review on Opportunities and Difficulties with HCNG as a Future Fuel 81 Table 1 shows that, addition of hydrogen increases the H/C ratio of the fuel. A higher H/C ratio results in less CO2 per unit of energy produced and thereby reduces greenhouse gas emissions. Natural gas has low flame speed while hydrogen has the flame speed about eight times higher therefore, when excess air ratio is much higher than the stoichiometric condition, the combustion of natural gas is not as stable as HCNG [11]. The problem encountered using natural gas is that the engine will experience incomplete combustion (misfire) before sufficient NOx reductions are achieved. Adding hydrogen to the fuel extends the amount of charge dilution that can be achieved while still maintaining efficient combustion [7]. Hydrogen also has a very low energy density per unit volume and as a result, volumetric heating value of the HCNG mixture decreases as the proportion of hydrogen is increased in the mixture.Blends of HCNG ranging from 15- 30% extend the lean operating limit ensuring complete combustion which reduces HC and CO emissions [4][7]. 1.2 Engine Performance of HCNG Number of experiments had been performed and all had shown that the HCNG which is a blend of hydrogen and natural gas increases the efficiency and reduces the emissions of gasoline (SI) engine. HCNG has many advantages when it comes to performance because of the higher octane rating of hydrogen, the engine performance generally increases with the addition of hydrogen. Many researchers shown that the thermal efficiency of both natural gas and HCNG increases with increasing load, which makes it an ideal fuel for high load applications and heavy-duty vehicles, this relationship can be seen in Fig.2 and it is clear that in every case, the HCNG fuel has a higher thermal efficiency than pure natural gas[3][6][8]. Raman et al. [11] analysed the usage of HCNG in lean burn SI engines, using different volumes of hydrogen on a GM 5.71, V8 engine. With 15 and 30% volume of H2, abruptly reductions in NOX with some HC penalty were observed as a result of very lean combustion. Fig. 1: Local Emissions for different Fig. 2: Thermal Efficiency of HCNG contents of hydrogen in HCNG increases with increasing load [8] 82 Priyanka Goyal & S.K. Sharma Munshi et al. [12] performed experiments on a turbocharged lean burn natural gas engine with a mixture of hydrogen and natural gas. Tests were carried out to get the most suitable H2-CNG blend for H2 fractions between 20 and 30% by volume. 20% volume of H2 was found to provide the desirable effects when the engine and vehicle performance attributes are taken in consideration. Bysveen [13] investigated that the brake thermal efficiency for HCNG is greater than CNG for the same excess air ratio (λ) and the difference in brake thermal efficiency between HCNG and CNG increases with increasing excess air ratio. Results also shows that by increasing the excess air ratio and fraction of hydrogen to the CNG emissions of NOX are reducing significantly. This leaning out may easily be achieved without any substantial HC penalty. Ma et al. [5] carried out an experiment on Combustion and emission characteristics of port injection turbocharged (SI) engine fuelled with many H2-CNG blend ratios varying between 0-50% under various ignition timings. Results show that with increased percentage of hydrogen, the maximum brake torque (MBT) timing decreases and the indicated thermal efficiency increases. MBT gets close to top dead centre and the indicated thermal efficiency increases with decreased load. The duration of combustion is reduced by higher fraction of hydrogen in HCNG. All the NOX, CO, and HC emissions tend to come down with the increase of spark advance angle with the increase of load. Effects of adding hydrogen to the CNG is also same for heavy– duty vehicles. Park et al. [14] analysed the influences of hydrogen on the performance and emission characteristics of a heavy duty natural gas engine. He explained that NOX reduction of over 80% is possible by employing retarded spark timing with the addition of 30 vol.% hydrogen with natural gas under the condition of best thermal efficiency. Morrone [14] developed a numerical model and used this to investigate the time evaluation of the mass burned fraction of a passenger car engine in order to calculate the variation of brake thermal efficiency for hydrogen-natural gas blends. Satisfactory results were found between the numerical and experimental results for a CNG fuelled engine. 2. Challenges for Implementation of HCNG One of the biggest challenges using HCNG as a fuel for engines is determining the most optimized hydrogen/natural gas ratio. When the hydrogen fraction increases above certain limit, abnormal combustion such as pre-ignition, knock and backfire, will occur unless the spark timing and air-fuel ratio are adequately adjusted [10].
Recommended publications
  • Hydrogen-Enriched Compressed Natural Gas (HCNG)
    Year 2005 UCD—ITS—RR—05—29 Hydrogen Bus Technology Validation Program Andy Burke Zach McCaffrey Marshall Miller Institute of Transportation Studies, UC Davis Kirk Collier Neal Mulligan Collier Technologies, Inc. Institute of Transportation Studies ◊ University of California, Davis One Shields Avenue ◊ Davis, California 95616 PHONE: (530) 752-6548 ◊ FAX: (530) 752-6572 WEB: http://its.ucdavis.edu/ Hydrogen Bus Technology Validation Program Andy Burke, Zach McCaffrey, Marshall Miller Institute of Transportation Studies, UC Davis Kirk Collier, Neal Mulligan Collier Technologies, Inc. Technology Provider: Collier Technologies, Inc. Grant number: ICAT 01-7 Grantee: University of California, Davis Date: May 12, 2005 Conducted under a grant by the California Air Resources Board of the California Environmental Protection Agency The statements and conclusions in this Report are those of the grantee and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products 2 Acknowledgments Work on this program was funded by the Federal Transit Administration, the California Air Resources Board, and the Yolo-Solano Air Quality Management District. This Report was submitted under Innovative Clean Air Technologies grant number 01-7 from the California Air Resources Board. 3 Table of Contents Abstract………………………………………………………………………………...................6 Executive Summary…………………………………………………………………...................7
    [Show full text]
  • Improving Performance of Compressed Natural Gas Fueled Passenger Car Engine by Addition of Hydrogen
    Journal of Scientific & Industrial Research Vol. 77, January 2018, pp. 61-65 Improving Performance of Compressed Natural Gas Fueled Passenger Car Engine by Addition of Hydrogen A K Sehgal1*, M Saxena2, S Pandey3 and R K Malhotra4 *1Indian Oil Corporation Ltd, Faridabad, India 2Univeristy of Technology and Management, Shillong, India 3University of Petroleum and Energy Studies, Dehradun, India 4Petroleum Federation of India, New Delhi, India Received 06 October 2016; revised 05 June 2017; accepted 07 October 2017 Hydrogen is a clean fuel that can be used as sole fuel or blends with compressed natural gas (CNG) in the spark ignition engines. Blending of hydrogen in CNG improves the burning velocity and calorific value of CNG. Engine tests were carried out using CNG and optimized fuel blend of 18%HCNG for comparing the engine performance and emissions behavior. Marginal improvement in engine performance (up to 2%) and significant reduction in emissions with18%HCNG compared to neat CNG. The brake specific fuel consumption was 5% lesser compared to CNG. Replacement of methane by hydrogen in the 18%HCNG blend reduced the HC emissions by ~20% and NOx emissions was increased by ~ 10-20% compared to CNG. 18% HCNG decreased the methane emissions up to 25% compared to CNG. The investigation showed that 18% HCNG has given better performance and emissions compared to CNG. Keywords: Hydrogen, Compressed Natural Gas, Emissions, Methane Emissions Introduction produce any major pollutants such as CO, HC, SOx, Natural gas is a naturally occurring form of fossil smoke and other toxic metals except NOx. Hydrogen energy. Utilization of natural gas as fuel for internal can be produced from renewable sources such as combustion engines was almost restricted to biomass and water as well as from non-renewable stationary applications prior to World War II.
    [Show full text]
  • Hydrogen Enriched Compressed Natural Gas (Hcng) – a Futuristic Fuel for Internal Combustion Engines
    HYDROGEN ENRICHED COMPRESSED NATURAL GAS (HCNG) – A FUTURISTIC FUEL FOR INTERNAL COMBUSTION ENGINES by Kasianantham NANTHAGOPAL a*, Rayapati SUBBARAO b, Thangavelu ELANGO a, Ponnusamy BASKAR a and Kandasamy ANNAMALAI c a Automotive Research Centre, SMBS,VIT University, Vellore-14, Tamilnadu, India, e-mail: [email protected] b Department of Mechanical Engineering , Indian Institute of Technology Madras, Chennai-25, India. c Department of Automobile Engineering , MIT Campus, Anna University, Chennai-25, India Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated.
    [Show full text]
  • 2002-00201-01-E.Pdf (Pdf)
    report no. 2/95 alternative fuels in the automotive market Prepared for the CONCAWE Automotive Emissions Management Group by its Technical Coordinator, R.C. Hutcheson Reproduction permitted with due acknowledgement Ó CONCAWE Brussels October 1995 I report no. 2/95 ABSTRACT A review of the advantages and disadvantages of alternative fuels for road transport has been conducted. Based on numerous literature sources and in-house data, CONCAWE concludes that: · Alternatives to conventional automotive transport fuels are unlikely to make a significant impact in the foreseeable future for either economic or environmental reasons. · Gaseous fuels have some advantages and some growth can be expected. More specifically, compressed natural gas (CNG) and liquefied petroleum gas (LPG) may be employed as an alternative to diesel fuel in urban fleet applications. · Bio-fuels remain marginal products and their use can only be justified if societal and/or agricultural policy outweigh market forces. · Methanol has a number of disadvantages in terms of its acute toxicity and the emissions of “air toxics”, notably formaldehyde. In addition, recent estimates suggest that methanol will remain uneconomic when compared with conventional fuels. KEYWORDS Gasoline, diesel fuel, natural gas, liquefied petroleum gas, CNG, LNG, Methanol, LPG, bio-fuels, ethanol, rape seed methyl ester, RSME, carbon dioxide, CO2, emissions. ACKNOWLEDGEMENTS This literature review is fully referenced (see Section 12). However, CONCAWE is grateful to the following for their permission to quote in detail from their publications: · SAE Paper No. 932778 ã1993 - reprinted with permission from the Society of Automotive Engineers, Inc. (15) · “Road vehicles - Efficiency and emissions” - Dr. Walter Ospelt, AVL LIST GmbH.
    [Show full text]
  • Perspective of Msw to Power Generation Through Gas Engine
    PERSPECTIVE OF MSW TO POWER GENERATION THROUGH GAS ENGINE DEZHEN. CHEN*, MIN. YANG* *Thermal & Environmental Engineering Institute, Mechanical Engineering College, Tongji University, Shanghai, 200092, China. E-mail: [email protected] SUMMARY: In this paper perspective of MSW to power generation through gas engine in China is evaluated. The waste to energy (WtE) plant based on thermal chemical conversion and gas engine technology include four important issues: preparation of MSW materials, reliable gasification or pyrolysis reactors, gas product processing and availability of gas engine. The state of the arts of these issues have been surveyed and the challenge for implementing WtE process based on gas engine technology has been analysed. It has been found that MSW pretreatment machinery is relatively mature; the gas engine products suitable for syngas are also available. While economic and reliable gasifiers and syngas scrubbing systems are very limited and they are the core challenge for implementing WtE process through gas engine. 1. INTRODUCTION Most of municipal solid wastes (MSW) in big cities in China have been safely disposed through landfilling, incineration and other combined technologies. By the end of year of 2015, 60.2 wt.% of the MSW was disposed in landfills, 29.8 wt.% was incinerated and 1.8 wt.% was composted, there was still 8.2 wt.% of MSW piling on their generating sites and remaining untreated (Speciality committee of urban domestic refuse of CAEPI, 2016). Almost all of the incineration plants in China are equipped with boilers to recover heat released during incineration in form of steam for power generation. However in the small cities and countryside where the generation of MSW are less than 600 tonnes per day, setting up new waste to energy (WtE) plants based on incineration and Rankine cycle technology is difficult due to the economic constraints.
    [Show full text]
  • Hydrogen Energy Storage: Grid and Transportation Services Workshop
    02 Hydrogen Energy Storage: Grid and Transportation Services February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy EfficiencyWorkshop Structure and Renewable / 1 Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Grid and Transportation Services February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sacramento, California, May 14 –15, 2014 M. Melaina and J. Eichman National Renewable Energy Laboratory Prepared under Task No. HT12.2S10 Technical Report NREL/TP-5400-62518 February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 www.nrel.gov NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Analysis of Fuel Consumption of HCNG Bus for US and European Test Codes
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 19 (2017) pp. 8232-8237 © Research India Publications. http://www.ripublication.com Analysis of Fuel Consumption of HCNG Bus for US and European Test Codes Jeongok Han1, Jungmin Chae2, Tongwon Lee3 and Kwangho Ko4* 1,2 Department of New Energy Technology, Research Institute of KOGAS, Suinro, Ansansi, Gyeonggi-do, Korea. 3,4 Department of Automotive engineering, AJOU Motor College, Boryeongsi, Chungnam, Korea. 4*corresponding author’s 1Orcid: 0000-0002-4261-6730, 2Orcid: 0000-0002-7142-7218, 3Orcid: 0000-0001-5075-9603 4Orcid: 0000-0001-9290-5269 & 4SCOPUS ID 55415346100) Abstract The US test code adopts carbon balance method also and fuel density at 20’C, one of the important coefficients in calculating This study examines the US and European test codes for fuel procedure should be specified. In EU, UNECE Regulation No. consumption calculation of natural gas fueled vehicles, and 101-Revision 3 presents the fuel economy test procedure for analyzes the suitability for the HCNG(Hydrogen added the natural gas fueled vehicles and the standard test fuel density Compressed Natural Gas) fueled vehicles. The fuel is fixed as 0.654kg/m3 which is the value at 15’C[4]. It uses consumption calculation formula is derived by the balancing average fuel density value in the calculation procedure and the relation of the carbon weight of the fuel with vehicle exhaust test code specifies different calculating coefficients for various gas. US code do not limit the composition of test gas fuel, but gas fuels like HCNG(Hydrogen added Compressed Natural European code specifies reference test fuel (G20, G23).
    [Show full text]
  • Technical Evaluation and Assessment of CNG/LPG Bi-Fuel and Flex-Fuel Vehicle Viability C-ACC-4-14042-01
    May 1994 • NRELffP-425-6544 Technical Eval ·on and Assessment of C !LPG Bi-Fuel and Flex-Fuel V cle Viability J .E. Sinor Consultants, Inc. Niwot, CO •.. •... ···� �=- ·-· ·��-· National Renewable Energy Laboratory 1617• Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Operated by Midwest Research Institute for the U.S. Department of Energy Under Contract No. DE-AC02-83CH)0093_____ _ _ NRELffP-425-6544 • UC Category: 335 • DE94006925 Technical Evaltil*ion··:·:·:·:·:·:·:·: and ·, Assessment of C , /LPG Bi-Fuel and Flex-Fuel Vell�le Viability J J.E. Sinor Consultants, Inc. Niwot, CO technical monitor: C. Colucci NREL �·� .,!!!!!�-· ·� �--­ .. •.·-· ···� National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory operated for the U.S. Department of Energy under contract No. DE-AC02-83CH10093 Prepared under Subcontract No. ACC-4-14042-01 May 1994 Thispub lication was reproducedfrom thebest available camera-readycopy submitted by the subcontractor and received no editorial review at NREL. NOTICE NOTICE: This reportwas prepared as an accountof work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or processdisclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Caterpillar Natural Gas Engines
    CATERPILLAR MINING OIL & GAS NATURAL RAIL MARINE GAS ENGINES ELECTRIC POWER Lower Operating Costs, Proven Performance We’re “all in” on a natural gas-powered future You told us what you want from Caterpillar® engines: fuel flexibility, reduced operating costs and lower emissions. You want to tap into the cost savings of natural gas while retaining the traditional performance and durability of diesel engines. Small wonder: natural gas is abundant, cheap and clean—it fits right in with sustainability trends. Just as important, it is clean burning while providing a real alternative to diesel fuel pricing. And the gas fueling infrastructure is growing. That’s why we are expanding our portfolio of natural gas engines in a variety of applications. We are also extending our technology to customers interested in retrofitting their existing engines. This is a new era where natural gas will be a major fuel source and ringb significant bottom line cost savings to your businesses. Natural Gas Engine Technology Caterpillar is a leader in natural gas technology with thousands of engines operating in the field. We are leveraging our experience and leading technology into other areas. Today, we offer natural gas engines featuring spark ignited and Dynamic Gas Blending technologies. In the future, we will introduce a third technology: high-pressure direct injection (HPDI). In each case, we ensure the right technology is deployed into the right application, fully supporting your goals for performance, safety and reliability. Dynamic Gas Blending Dynamic Gas Blending technology is a proprietary Caterpillar dual fuel technology that uses existing gas engine hardware to allow Caterpillar diesel engines to burn natural gas.
    [Show full text]
  • 1108-HCNG Technology
    ARIELI ASSOCIATES MANAGEMENT, ENGINEERING AND OPERATIONS CONSULTING Report No. 1108 MIXED HYDROGEN/NATURAL GAS (HCNG) TECHNOLOGY- VISIT AT COLLIER TECHNOLOIES -2- 1. INTRODUCTION As a California transit bus operator with more than 200 buses in its fleet, LACMTA is subject to very stringent emission standards- see Figure 1. Summary of Transit Bus Regulation Adopted Urban Transit Bus Fleet Rule Requirements and Emission Standards -2- DIESEL PATH ALTERNATIVE-FUEL PATH Model NOx (g/bhp-hr) PM (g/bhp-hr) NOx (g/bhp-hr) PM (g/bhp-hr) INTRODUCTIONYear 2000 4.0 0.05 2.5 optional 0.05 10/2002 2.5 NOx+NMHC 0.01 1.8 0.03 NOx+NMHC optional 10/2002 4.8 NOx fleet 4.8 NOx fleet average average 2003-09 Accelerated PM PM Retrofit Retrofit Requirements Requirements <=15 PPM sulfur diesel fuel 7/2003 3 bus demo of ZEB’s for large fleets (>200) 2004 0.5 0.01 2007 0.2 0.01 0.2 0.01 2008 15% of new purchases are ZEB’s for large fleets (>200) 2010 15% of new purchases are ZEB’s for large fleets (>200) FIGURE 1- SUMMARY OF THE CARB ADOPTED RULES The technological avenues to meet the above standards are: (i) modified propulsion with or without energy storage devices ; (ii) modified fuels; and, (iii) modified drivetrains. Figure 2 shows the current options available for evaluation. -3- FIGURE 2- TECHNOLOGY EVALUATION MATRIX The fuel modified path is by far the most appealing one for, both, the operator of buses and for the manufacturer of buses. This path requires modifications to the Internal Combustion Engine (ICE) and the CNG fuelling stations but is largely transparent to the manufacturer and the user.
    [Show full text]
  • Complementing Syngas with Natural Gas in Spark Ignition Engines for Power Production: Effects on Emissions and Combustion
    energies Article Complementing Syngas with Natural Gas in Spark Ignition Engines for Power Production: Effects on Emissions and Combustion Carlo Caligiuri 1,2,* , Urban Žvar Baškoviˇc 3, Massimiliano Renzi 1 , Tine Seljak 3, Samuel Rodman Oprešnik 3, Marco Baratieri 1 and Tomaž Katrašnik 3 1 Faculty of Science and Technology, Free University of Bozen/Bolzano, 39100 Bolzano, Italy; [email protected] (M.R.); [email protected] (M.B.) 2 Institute for Applied Physics “Nello Carrara” (IFAC), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino, 50019 Firenze, Italy 3 Laboratory for Internal Combustion Engines and Electromobility, Faculty of Mechanical Engineering, University of Ljubljana, Aškerˇceva6, SI-1000 Ljubljana, Slovenia; [email protected] (U.Ž.B.); [email protected] (T.S.); [email protected] (S.R.O.); [email protected] (T.K.) * Correspondence: [email protected] Abstract: Power generation units based on the bio-syngas system face two main challenges due to (i) the possible temporary shortage of primary sources and (ii) the engine power derating associated with the use of low-energy density fuels in combustion engines. In both cases, an external input fuel is provided. Hence, complementing syngas with traditional fuels, like natural gas, becomes a necessity. In this work, an experimental methodology is proposed, aiming at the quantification of the Citation: Caligiuri, C.; Žvar impact of the use of both natural gas and syngas in spark ignition (SI) engines on performance and Baškoviˇc,U.; Renzi, M.; Seljak, T.; emissions. The main research questions focus on investigating brake thermal efficiency (BTE), power Oprešnik, S.R.; Baratieri, M.; derating, and pollutant emission (NOx, CO, THC, CO ) formation, offering quantitative findings that Katrašnik, T.
    [Show full text]
  • Biomass Gasification Power Generation Module Etsu B
    DESIGN OF A 2.5MW(e) BIOMASS GASIFICATION POWER GENERATION MODULE ETSU B/T1/00569/REP Contractor Wellman Process Engineering Limited Prepared by R McLellan The work described in this report was carried out under contract as part of the New & Renewable Energy Programme, managed by ETSU on behalf of the Department of Trade and Industry. The views and judgements expressed in this report are those of the contractor and do not necessarily reflect those of ETSU or the Department of Trade and Industry. First published 2000 © Crown copyright 2000 1 EXECUTIVE SUMMARY In the increasingly industrialised world biomass has to be considered as a major sustainable energy resource for electricity production. Already large quantities of unused biomass material exists in the form of forestry waste and agricultural by- products and the cultivation of arable energy crops is usually possible. Efficient, reliable and cost effective technologies for the conversion of these biomass feed stocks to electrical power are currently under development. At the scale of electrical production suited to biomass, conversion processes involving gasification have the potential of producing higher fuel to electrical power efficiencies over those employing direct combustion and steam cycle technology. Based on experience in the design and operation of Up-draught, Down-draught and Fluidised bed gasifiers Wellman firmly believes that Up- draught fixed bed gasification offers the most robust and commercially viable technology for continuous power generation in the 2.5MW(e) to 15.0MW(e) range. Based on over seventy years of commercial gasification and gas clean up experience Wellman Process Engineering set about the development of a gasification system to efficiently process wood chip to produce a clean fuel gas.
    [Show full text]