Vrozených Srde Genetické Příčiny Vrozených Srdečních Vad Monika

Total Page:16

File Type:pdf, Size:1020Kb

Vrozených Srde Genetické Příčiny Vrozených Srdečních Vad Monika MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie Genetické příčiny vrozených srdečních vad Diplomová práce Monika Švarcová VEDOUCÍ PRÁCE : Mgr. Diana Nikulenkov Grochová, Ph.D. Brno 2015 Bibliografický záznam Autor: Bc. Monika Švarcová Přírodovědecká fakulta, Masarykova univerzita Ústav experimentální biologie Název práce: Genetické příčiny vrozených srdečních vad Studijní program: Experimentální biologie Studijní obor: Molekulární biologie a genetika Vedoucí práce: Mgr. Diana Nikulenkov Grochová, Ph.D. Akademický rok: 2014/2015 Počet stran: 101 Klíčová slova: Vrozené srdeční vady; sekvenování nové generace; varianty DNA; Sangerovo sekvenování Bibliographic Entry Author: Bc. Monika Švarcová Faculty of Science, Masaryk University Department of Experimental Biology Title of Thesis: Genetic causes of congenital heart defects Degree programme: Experimental biology Field of Study: Molecular biology and genetics Supervisor: Mgr. Diana Nikulenkov Grochová, Ph.D. AcademicYear: 2014/2015 Number of Pages: 101 Keywords: Congenital heart defects; next generation sequencing; DNA variants; Sanger sequencing Abstrakt Vrozené srdeční vady (lat. vitium cordis congenitum , VCC) jsou nejčastější skupinou vrozených vad, postihují více než 1 % narozených dětí. Etiologie většiny případů není zcela známa. Příčiny VCC lze dělit na negenetické (zevní) a genetické faktory. VCC mohou být následkem různých genetických změn, jako jsou aneuploidie, polyploidie, strukturní aberace chromozomů, ale také mutace jednotlivých genů. Tyto VCC jsou často asociovány i s malformacemi jiných orgánů (tzv. syndromové VCC). Další skupinou jsou VCC izolované, tj. bez vady dalšího orgánu, a jejich příčiny jsou méně jasné. Část izolovaných vad je následkem mutací uvnitř různých genů. U zbylých případů izolovaných VCC se předpokládá multifaktoriální příčina. Publikace z posledních let popisují řadu genů, které mají přímou souvislost s rozvojem syndromových a také izolovaných VCC. Cílem této diplomové práce bylo zmapování genetické etiologie VCC u prenatálně zjištěných případů v Centru prenatální diagnostiky, s.r.o., dále výběr kandidátních genů a detekce jejich variant s využitím přístroje pro masivně paralelní sekvenování MiSeq ® (Illumina). Celkem bylo u 41 plodů analyzováno 139 typů variant DNA. Část z nich je možné dle dostupné literatury a databází řadit mezi benigní, resp. potenciálně benigní varianty. U jednoho plodu byla detekována varianta patogenní a u dalších čtyř plodů bylo nalezeno šest potenciálně patogenních variant. Většinu variant je nutno stále řadit do skupiny s nejasným významem. Vzhledem k přitažlivosti zkoumání příčin VCC lze očekávat, že se i tyto varianty dočkají jasné klasifikace. V závěru práce je prezentována kazuistika rodiny s rekurentním výskytem VCC, u které byla detekována patogenní varianta v genu TBX5 . Abstract Congenital heart defects (CHD) are the most common group of birth defects, affecting more than 1 % of births. Most of the cases don´t have a completely known etiology. Some causes of CHD can be divided into two groups - nongenetic (environmental) and genetic factors. CHD can be caused by various genetic changes such as an aneuploidy, a polyploidy, some structural aberrations of chromosomes or mutations in single genes. These CHD are often associated with some malformations of other organs (syndromic CHD). A next group is isolated CHD without any defects of other organs. Causes of isolated CHD are less clear. A part of isolated defects is an effect of some mutations within different genes. A multifactorial inheritance is supposed in some remaining cases of isolated CHD. Some recent publications describe a number of genes that are associated with a development of syndromal and isolated CHD. The main aim of this diploma thesis was to describe a genetic etiology of CHD in prenatally detected cases in Centrum prenatální diagnostiky, s.r.o., then to select candidate genes and detect their variants using a massively parallel sequencing by using MiSeq ® instrument (Illumina). Altogether 139 types of DNA variants were analyzed in 41 fetuses. Some of them belong into some benign, resp. potentially benign variants. One detected variant in one fetus is a pathogenic variant and six variants in four fetuses are potentially pathogenic variants. Most of the variants must be classed into a group of variants of an unknown significance. Due to an attractiveness of a mutation investigation there is a probability that also these variants will gain a clear significance in the future. The end of this thesis is focused on a case of a family with a recurrent occurrence of CHD where a pathogenic variant in a gene TBX5 was detected. Poděkování Na tomto místě bych ráda poděkovala Mgr. Dianě Nikulenkov Grochové, Ph.D., vedoucí této práce, a RNDr. Jitce Kadlecové, Ph.D., odborné konzultantce, za vedení, pomoc a cenné rady, jež mi věnovaly při řešení teoretické i experimentální části mé diplomové práce. Dále bych chtěla poděkovat Cytogenetické laboratoři Brno, s.r.o. za možnost zpracování práce na jejich pracovišti. Mé díky patří také všem jejím zaměstnankyním, které mi svým přijetím a radami usnadnily řešení zadané problematiky. Současně děkuji M.Sc. Fedoru Nikulenkovovi, Ph.D. za pomoc s grafickou úpravou. V neposlední řadě děkuji lékařům Centra prenatální diagnostiky, s.r.o., jmenovitě pak MUDr. Ilze Grochové, MUDr. Haně Jičínské, MUDr. Tomáši Freibergerovi a MUDr. Pavlu Vlašínovi, za konzultace a pomoc týkající se práce. Prohlášení Prohlašuji, že jsem svoji diplomovou práci vypracovala samostatně s využitím informačních zdrojů, které jsou v práci citovány. Brno 25. dubna 2015 ………………………. Bc. Monika Švarcová Obsah 1. Úvod a problematika .................................................................................................... 11 1. 1. Embryonální vývoj srdce ..................................................................................... 11 1. 2. Vrozené srdeční vady ........................................................................................... 12 1. 3. Příčiny vrozených srdečních vad ......................................................................... 13 1. 4. Sekvenování nové generace ................................................................................. 20 2. Cíle diplomové práce ................................................................................................... 23 3. Materiál a metody ........................................................................................................ 24 3. 1. Materiál ................................................................................................................ 24 3. 2. Metody ................................................................................................................. 25 4. Výsledky ...................................................................................................................... 38 4. 1. Studium databáze případů VCC, výběr vzorků pro mutační analýzu .................. 38 4. 2. Optimalizace návrhu sond pro obohacení vzorku o cílové oblasti genomu ........ 42 4. 3. Výsledky protokolu HaloPlex, příprava a úprava knihovny na sekvenování ...... 45 4. 4. Výsledné parametry kvality mutační analýzy ...................................................... 48 4. 5. Varianty DNA nalezené mutační analýzou .......................................................... 54 4. 6. Validované vybrané varianty DNA ...................................................................... 66 4. 7. Kazuistika - Holtové-Oramův syndrom ............................................................... 72 5. Diskuze ........................................................................................................................ 78 5. 1. Zhodnocení kvality mutační analýzy ................................................................... 78 5. 2. Zhodnocení výsledků mutační analýzy ................................................................ 80 5. 3. Zhodnocení kazuistiky - Holtové-Oramův syndrom............................................ 82 5. 4. Návrh dalšího průběhu studie .............................................................................. 83 6. Souhrn .......................................................................................................................... 84 7. Summary ...................................................................................................................... 86 8. Literatura ...................................................................................................................... 88 8. 1. Literární zdroje ..................................................................................................... 88 8. 2. Elektronické zdroje .............................................................................................. 98 Seznam zkratek Array CGH Komparativní genomová hybridizace na čipu (array comparative genomic hybridization) CNV Varianty v počtu kopií (copy number variations) HOS Holtové-Oramův syndrom (Holt-Oram syndrome) MLPA Multiplexová amplifikace závislá na ligaci sond (multiplex ligation dependent probe amplification) NGS Sekvenování nové (příští) generace (next generation sequencing) QF-PCR Kvantitativní fluorescenční polymerázová řetězová reakce (quantitative fluorescent polymerase chain reaction) SBS Sekvenování syntézou (sequencing by synthesis) UTR Nepřekládaná oblast (untranslated region) VCC Vrozené srdeční vady ( vitium cordis congenitum ) VOUS Varianta DNA
Recommended publications
  • Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
    EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus ..................................................................................................
    [Show full text]
  • Table SI. Genes Upregulated ≥ 2-Fold by MIH 2.4Bl Treatment Affymetrix ID
    Table SI. Genes upregulated 2-fold by MIH 2.4Bl treatment Fold UniGene ID Description Affymetrix ID Entrez Gene Change 1558048_x_at 28.84 Hs.551290 231597_x_at 17.02 Hs.720692 238825_at 10.19 93953 Hs.135167 acidic repeat containing (ACRC) 203821_at 9.82 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 1559509_at 9.41 Hs.656636 202957_at 9.06 3059 Hs.14601 hematopoietic cell-specific Lyn substrate 1 (HCLS1) 202388_at 8.11 5997 Hs.78944 regulator of G-protein signaling 2 (RGS2) 213649_at 7.9 6432 Hs.309090 serine and arginine rich splicing factor 7 (SRSF7) 228262_at 7.83 256714 Hs.127951 MAP7 domain containing 2 (MAP7D2) 38037_at 7.75 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 224549_x_at 7.6 202672_s_at 7.53 467 Hs.460 activating transcription factor 3 (ATF3) 243581_at 6.94 Hs.659284 239203_at 6.9 286006 Hs.396189 leucine rich single-pass membrane protein 1 (LSMEM1) 210800_at 6.7 1678 translocase of inner mitochondrial membrane 8 homolog A (yeast) (TIMM8A) 238956_at 6.48 1943 Hs.741510 ephrin A2 (EFNA2) 242918_at 6.22 4678 Hs.319334 nuclear autoantigenic sperm protein (NASP) 224254_x_at 6.06 243509_at 6 236832_at 5.89 221442 Hs.374076 adenylate cyclase 10, soluble pseudogene 1 (ADCY10P1) 234562_x_at 5.89 Hs.675414 214093_s_at 5.88 8880 Hs.567380; far upstream element binding protein 1 (FUBP1) Hs.707742 223774_at 5.59 677825 Hs.632377 small nucleolar RNA, H/ACA box 44 (SNORA44) 234723_x_at 5.48 Hs.677287 226419_s_at 5.41 6426 Hs.710026; serine and arginine rich splicing factor 1 (SRSF1) Hs.744140 228967_at 5.37
    [Show full text]
  • Adaptive History of the Chimpanzee Subspecies in the Genomic Era
    Adaptive History of the Chimpanzee Subspecies in the Genomic Era Jessica Nye TESI DOCTORAL UPF 2018 Directors de la Tesi Jaume Bertranpetit i Hafid Laayouni CIÈNCIES EXPERIMENTALS I DE LA SALUT ii Acknowledgements I would like to thank my advisors Dr. Jaume Bertranpetit and Dr. Hafid Laayouni for guiding me during my doctoral research. I would like to thank my family and friends for supporting me during my many years of education. To my fellow lab mates, I am grateful for the theoretical discussions we had over the last four years. This work was supported by FI Agaur grant FI-DGR 2015. iii iv Abstract Chimpanzees are our closest living genetic cousins. The species consists of four subspecies, each with a unique demographic history. In order to better understand their species, a detailed map of signatures of selection will highlight important genetic differences between the four subspecies. Here, we interrogate the genome using 15 tests of selection. We simulate neutral and selective scenarios taking their unique demographic history into account in the model. We combine all these elements using a machine learning approach to highlight regions of interest in each subspecies. We specifically investigate the regions of the genome that have been selected after introgression with bonobo. We investigate the haplotype changes that have occurred since the divergence with humans in a few specially selected genes. From this, we find that the evolutionary history of each of the four subspecies is unique. That subtle differences in their demographic history and environment have greatly shaped their genetic diversity. In general, we observe signatures in selection in phenotypes involving immunity, muscle function, reproduction, and DNA repair.
    [Show full text]
  • Cellular and Molecular Aspects of the Response of the Testis to Nutrition In
    Cellular and molecular aspects of the response of the testis to nutrition in sexually mature sheep Yongjuan Guan 21004548 This thesis is presented for the degree of Doctor of Philosophy of The University of Western Australia School of Animal Biology Institute of Agriculture March 2015 Declaration Declaration The work presented in this thesis is original work of the author, and none of the material in this thesis has been submitted either in full, or part, for a degree at this university or any other universities or institutions before. The experimental designs and manuscript preparation were carried out by myself after discussion with my supervisors Prof Graeme Martin, A/Prof Irek Malecki and Dr Penny Hawken. Yongjuan Guan March 2015 1 Contents Contents Summary ....................................................................................................................................... 4 Acknowledgements ....................................................................................................................... 8 Publications ................................................................................................................................. 10 Chapter 1: General Introduction ................................................................................................. 12 Chapter 2: Literature Review ...................................................................................................... 16 2.1 Male reproduction ............................................................................................................
    [Show full text]
  • Novel Gene Discovery in Primary Ciliary Dyskinesia
    Novel Gene Discovery in Primary Ciliary Dyskinesia Mahmoud Raafat Fassad Genetics and Genomic Medicine Programme Great Ormond Street Institute of Child Health University College London A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy University College London 1 Declaration I, Mahmoud Raafat Fassad, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Primary Ciliary Dyskinesia (PCD) is one of the ‘ciliopathies’, genetic disorders affecting either cilia structure or function. PCD is a rare recessive disease caused by defective motile cilia. Affected individuals manifest with neonatal respiratory distress, chronic wet cough, upper respiratory tract problems, progressive lung disease resulting in bronchiectasis, laterality problems including heart defects and adult infertility. Early diagnosis and management are essential for better respiratory disease prognosis. PCD is a highly genetically heterogeneous disorder with causal mutations identified in 36 genes that account for the disease in about 70% of PCD cases, suggesting that additional genes remain to be discovered. Targeted next generation sequencing was used for genetic screening of a cohort of patients with confirmed or suggestive PCD diagnosis. The use of multi-gene panel sequencing yielded a high diagnostic output (> 70%) with mutations identified in known PCD genes. Over half of these mutations were novel alleles, expanding the mutation spectrum in PCD genes. The inclusion of patients from various ethnic backgrounds revealed a striking impact of ethnicity on the composition of disease alleles uncovering a significant genetic stratification of PCD in different populations.
    [Show full text]
  • Characterisation of Gene and Pathway Expression in Stabilised Blood from Children with Coeliac Disease
    Coeliac disease BMJ Open Gastroenterol: first published as 10.1136/bmjgast-2020-000536 on 15 December 2020. Downloaded from Characterisation of gene and pathway expression in stabilised blood from children with coeliac disease Hanna Gustafsson Bragde ,1,2 Ulf Jansson,3 Mats Fredrikson,2 Ewa Grodzinsky,2 Jan Söderman1,2 To cite: Bragde HG, ABSTRACT Summary box Jansson U, Fredrikson M, Introduction A coeliac disease (CD) diagnosis is et al. Characterisation of likely in children with levels of tissue transglutaminase What is already known about this subject? gene and pathway expression autoantibodies (anti- TG2) >10 times the upper reference in stabilised blood from Paediatric coeliac disease (CD) diagnosis still re- value, whereas children with lower anti- TG2 levels need ► children with coeliac quires sampling and evaluation of small intestinal an intestinal biopsy to confirm or rule out CD.A blood disease. BMJ Open Gastro biopsies in many cases. sample is easier to obtain than an intestinal biopsy 2020;7:e000536. doi:10.1136/ Gene expression in small intestinal biopsies differs sample, and stabilised blood is suitable for routine ► bmjgast-2020-000536 between patients with active CD and patients with Universitets Bibliotek. Protected by copyright. diagnostics because transcript levels are preserved at non- CD. ► Additional material is sampling. Therefore, we investigated gene expression Blood is generally a more accessible sampling ma- published online only. To view in stabilised whole blood to explore the possibility of ► terial compared with small intestinal biopsies. please visit the journal online gene expression- based diagnostics for the diagnosis and (http:// dx. doi. org/ 10. 1136/ Stabilised blood is suitable for routine gene follow- up of CD.
    [Show full text]
  • 2017 National Veterinary Scholars Symposium 18Th Annual August 4
    2017 National Veterinary Scholars Symposium 18th Annual August – 4 5, 2017 Natcher Conference Center, Building 45 National Institutes of Health Bethesda, Maryland Center for Cancer Research National Cancer Institute with The Association of American Veterinary Medical Colleges https://www.cancer.gov/ Table of Contents 2017 National Veterinary Scholars Symposium Program Booklet Welcome .............................................................................................................................. 1 NIH Bethesda Campus Visitor Information and Maps .........................................................2 History of the National Institutes of Health ......................................................................... 4 Sponsors ............................................................................................................................... 5 Symposium Agenda .......................................................................................................6 Bios of Speakers ................................................................................................................. 12 Bios of Award Presenters and Recipients ........................................................................... 27 Training Opportunities at the NIH ...................................................................................... 34 Abstracts Listed Alphabetically .......................................................................................... 41 Symposium Participants by College of Veterinary Medicine
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]
  • An Integrative Analysis of Gene Expression Profiles
    Int J Clin Exp Pathol 2020;13(7):1698-1706 www.ijcep.com /ISSN:1936-2625/IJCEP0107763 Original Article Identification of transcriptomic markers for developing idiopathic pulmonary fibrosis: an integrative analysis of gene expression profiles Diandian Li1, Yi Liu2, Bo Wang1 1Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; 2West China School of Medicine, Sichuan University, Chengdu 610041, China Received January 12, 2020; Accepted March 6, 2020; Epub July 1, 2020; Published July 15, 2020 Abstract: Idiopathic pulmonary fibrosis (IPF) remains a lethal disease with unknown etiology and unmet medical need. The aim of this study was to perform an integrative analysis of multiple public microarray datasets to inves- tigate gene expression patterns between IPF patients and healthy controls. Moreover, functional interpretation of differentially expressed genes (DEGs) was performed to assess the molecular mechanisms underlying IPF progres- sion. DEGs between IPF and normal lung tissues were picked out by GEO2R tool and Venn diagram software. Data- base for Annotation, Visualization and Integrated Discovery (DAVID) was applied to analyze gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway. Protein-protein interaction (PPI) of these DEGs was visu- alized by Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING). 5520 DEGs were identified in IPF based on six profile datasets, including 3714 up-regulated genes and 1806 down-regulated genes. Using Venn software, a total of 367 commonly altered DEGs were revealed, including 259 up-regulated genes mostly enriched in collagen catabolic process, heparin binding, and the extracellular region.
    [Show full text]
  • Supplementary Table 1 Double Treatment Vs Single Treatment
    Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19
    [Show full text]
  • Mouse Cfap53 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Cfap53 Knockout Project (CRISPR/Cas9) Objective: To create a Cfap53 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cfap53 gene (NCBI Reference Sequence: NM_028948 ; Ensembl: ENSMUSG00000035394 ) is located on Mouse chromosome 18. 8 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 8 (Transcript: ENSMUST00000114895). Exon 2~6 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 4.54% of the coding region. Exon 2~6 covers 74.19% of the coding region. The size of effective KO region: ~8263 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 8 Legends Exon of mouse Cfap53 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 6 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]