The Conservation Landscape: Trees and Nature on the Great Plains Joel Jason Orth Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecoregions of New England Forested Land Cover, Nutrient-Poor Frigid and Cryic Soils (Mostly Spodosols), and Numerous High-Gradient Streams and Glacial Lakes
58. Northeastern Highlands The Northeastern Highlands ecoregion covers most of the northern and mountainous parts of New England as well as the Adirondacks in New York. It is a relatively sparsely populated region compared to adjacent regions, and is characterized by hills and mountains, a mostly Ecoregions of New England forested land cover, nutrient-poor frigid and cryic soils (mostly Spodosols), and numerous high-gradient streams and glacial lakes. Forest vegetation is somewhat transitional between the boreal regions to the north in Canada and the broadleaf deciduous forests to the south. Typical forest types include northern hardwoods (maple-beech-birch), northern hardwoods/spruce, and northeastern spruce-fir forests. Recreation, tourism, and forestry are primary land uses. Farm-to-forest conversion began in the 19th century and continues today. In spite of this trend, Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and 5 level III ecoregions and 40 level IV ecoregions in the New England states and many Commission for Environmental Cooperation Working Group, 1997, Ecological regions of North America – toward a common perspective: Montreal, Commission for Environmental Cooperation, 71 p. alluvial valleys, glacial lake basins, and areas of limestone-derived soils are still farmed for dairy products, forage crops, apples, and potatoes. In addition to the timber industry, recreational homes and associated lodging and services sustain the forested regions economically, but quantity of environmental resources; they are designed to serve as a spatial framework for continue into ecologically similar parts of adjacent states or provinces. they also create development pressure that threatens to change the pastoral character of the region. -
The Settlement of Blackwood Township, Hayes County, Nebraska, 1878-1907
Nebraska History posts materials online for your personal use. Please remember that the contents of Nebraska History are copyrighted by the Nebraska State Historical Society (except for materials credited to other institutions). The NSHS retains its copyrights even to materials it posts on the web. For permission to re-use materials or for photo ordering information, please see: http://www.nebraskahistory.org/magazine/permission.htm Nebraska State Historical Society members receive four issues of Nebraska History and four issues of Nebraska History News annually. For membership information, see: http://nebraskahistory.org/admin/members/index.htm Article Title: The Settlement of Blackwood Township, Hayes County, Nebraska, 1878-1907 Full Citation: Robert D Clark. “The Settlement of Blackwood Township, Hayes County, Nebraska, 1878-1907,” Nebraska History 66 (1985): 74-110 URL of article: http://www.nebraskahistory.org/publish/publicat/history/full-text/NH1985Blackwood.pdf Date: 12/05/2013 Article Summary: The first settlers of Blackwood Township mistakenly believed that “the rain follows the plow.” Drought caused them to mortgage and subsequently lose their property. By 1985 descendents of only two of the original Blackwood families still lived in the township. Cataloging Information: Early Settlers: Miles J Abbott, Michael Brennan, Warren Clark, Charley Coburger, Joab Copeland, Angus Crucklaw, Charles Deuter, David Fuller, Oscar Gruver, Dock Gruver, Franklin Hanks, John Heitkamp, John S and Mary Hughes, Ellsworth and Maggie Jeffries, William -
Regulatory Underkill: the Bush Administration's Insidious
Regulatory Underkill: The Bush Administration’s Insidious Dismantling of Public Health and Environmental Protections by William Buzbee, Robert Glicksman, Sidney Shapiro and Karen Sokol A Center for Progressive Regulation White Paper October 2004 Introduction The intended and achieved consequence of this effort In the 1960s and early 1970s, Congress passed a series has been a significant weakening, and in some cases a of path-breaking laws to shield public health and the wholesale abandonment, of many of the vital and statutorily environment from the increasingly apparent dangers created mandated health and safety protections upon which by industrial pollution and natural resource destruction. Since Americans have come to rely. that time, regulated corporations have made determined and For example, the Bush administration has: concerted efforts to use their wealth and political power to diminish or even to eliminate various health, environment, • proposed a rule change that would relieve thousands and safety protections. As is documented in the pages that of coal-fired power plants of their obligations to install follow, the Bush administration has granted regulated entities technology that would reduce—by the tons—emissions of unprecedented license in this area, according corporate harmful airborne pollutants that are significant causes of officials de facto policy-making power while excluding the cancer, neurological disorders, asthma, and lung disease; general public from decision-making to the fullest extent • stopped prosecuting lawsuits -
Rangelands the Worst Hard Time
BOOK REVIEW The Worst Hard Time: The Untold Story of Those Who Survived the Great American Dust Bowl. By Timothy Egan. 2006. Mariner Books, Houghton Miffl in Co., Boston, MA, USA. 340 p. US $14.95. paper. ISBN-13 978-0-618-77347-3. Those discussing future rangeland climates would do well to consider the challenges of the past. For Americans, the drought disaster that most haunts our national imagination is the “Dust Bowl,” encom- passing over 100 million acres of the American heartland just over 75 years ago. A coinage of a clever newspaper reporter, the Dust Bowl was an unprecedented economic, social, and ecological catastrophe that followed close upon one of the most rapid transformations of resilient native rangeland into intensive dry-land agriculture that shortly sowed the seeds of its own destruction. What had once been a vast shortgrass steppe, teeming with huge herds of migratory buffalo, and, for a short interval following, an “open range” (often overstocked with Texas Longhorn), became, with the arrival of the railroads, open to settlement and the sod-busting plow of determined, land-hungry immigrants. “Rain follows the plow!” was the clarion call of the day, and for a couple of remarkable decades of “the Great Plow-up,” precipitation was indeed reasonably reliable; the farms took root, and the com- munities grew and prospered, producing “the biggest wheat crop the world had ever seen” that para- doxically contributed to the market’s collapse. When the inevitable multi-year drought inexorably arrived, much of this dryland domain was bare and exposed without perennial cover; the stage was set for it all to just blow away. -
Journal the Center for Regenerative Practice
SUMMER 2021 JOURNAL THE CENTER FOR REGENERATIVE PRACTICE Field of the Future New Definition of Nutrient Growing a New Crop SUSAN JENNINGS Density Goes Beyond Labels of Regenerative Farmers DAN KITTREDGE AMY HARPER & KAT CHRISTEN CONTRIBUTORS Matan Mazursky, Educator AGRARIA JOURNAL SUMMER 2021 Gabby Amrhein, Megan Bachman, Beth Bridgeman, Jyoti Miller, Database Coordinator Ariella Brown, Caressa Brown, Kat Christen, Scott Montgomery, Webmaster CONTENTS Sheryl Cunningham, David Diamond, Emily Foubert, Pam Miller, Office Manager Rose Hardesty, Amy Harper, Bob Huston, Rachel Isaacson, Teddy Pierson, Asst. Landuse Coordinator Susan Jennings, Dan Kittredge, Jim Linne, Peggy Nestor, Kaylee Rutherford, Miller Fellow An Invitation to Pay Attention— and Thrive, SHERYL CUNNINGHAM 4 Teddy Pierson, Kenisha Robinson, Rich Sidwell, Kenisha Robinson, Farmer Training Assistant What’s In a Name? Cheryl Smith Xinyuan Shi, Americorps VISTA 5 McKenzie Smith, Miller Fellow Field of the Future, PHOTOGRAPHY SUSAN JENNINGS 6 Mark Thornton, Educator Dennie Eagleson, Amy Harper, Rose Hardesty, New Definition of Nutrient Density Goes Beyond Labels, Tiffany Ward, Educator DAN KITTREDGE 9 Susan Jennings, Teddy Pierson, Renee Wilde Joseph Young, Melrose Acres Grant Coordinator Edible Ethics: To Harvest or Not to Harvest, GABBY LOOMIS-AMRHEIN 12 ILLUSTRATION FARMER PARTNER Natural Foods – Native Edible Plants, BY TEDDY PIERSON Bob Huston 14 Jason Ward Black Farming and Beyond, ARIELLA J. BROWN HORN 15 EDITORS COMMUNITY SOLUTIONS Amy Harper and Susan Jennings Farmer -
Characterization of Ecoregions of Idaho
1 0 . C o l u m b i a P l a t e a u 1 3 . C e n t r a l B a s i n a n d R a n g e Ecoregion 10 is an arid grassland and sagebrush steppe that is surrounded by moister, predominantly forested, mountainous ecoregions. It is Ecoregion 13 is internally-drained and composed of north-trending, fault-block ranges and intervening, drier basins. It is vast and includes parts underlain by thick basalt. In the east, where precipitation is greater, deep loess soils have been extensively cultivated for wheat. of Nevada, Utah, California, and Idaho. In Idaho, sagebrush grassland, saltbush–greasewood, mountain brush, and woodland occur; forests are absent unlike in the cooler, wetter, more rugged Ecoregion 19. Grazing is widespread. Cropland is less common than in Ecoregions 12 and 80. Ecoregions of Idaho The unforested hills and plateaus of the Dissected Loess Uplands ecoregion are cut by the canyons of Ecoregion 10l and are disjunct. 10f Pure grasslands dominate lower elevations. Mountain brush grows on higher, moister sites. Grazing and farming have eliminated The arid Shadscale-Dominated Saline Basins ecoregion is nearly flat, internally-drained, and has light-colored alkaline soils that are Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and America into 15 ecological regions. Level II divides the continent into 52 regions Literature Cited: much of the original plant cover. Nevertheless, Ecoregion 10f is not as suited to farming as Ecoregions 10h and 10j because it has thinner soils. -
Mountain-Prairie Region 6 Overview of the Service’S Mountain-Prairie Region
U.S. U.S.Fish Fish & Wildlife & Wildlife Service Service Mountain-Prairie Region 6 Overview of the Service’s Mountain-Prairie Region Widgeon Pond at Red Rocks Lake National Wildlife Refuge / USFWS The Mountain-Prairie Region consists of federal agencies such as the Department Regional Demographics 8 states in the heart of the American of Defense. Energy development, ■ Land area: 737,884 square miles west including Colorado, Kansas, agricultural trends and urbanization all (468,573,000 acres) Montana, Nebraska, North Dakota, exert influences on the Region’s ■ Population: 15,403,172 (Roughly 2.5 to South Dakota, Utah and Wyoming. The landscapes. 1 urban to rural ratio) region is defined by three distinct ■ Members of Congress: 37 landscapes. In the east lie the central Resource Facts and Figures ■ Federally Recognized Indian Tribes: 40 and northern Great Plains, primarily the ■ Approximately 5,751,358 acres ■ Public land: 137,024,000 acres (federal vast mixed- and short-grass prairies. To protected by the National Wildlife and state) the west rise the Rocky Mountains and Refuge System (NWRS), including ■ Wildlife-dependent recreation: the intermountain areas beyond the both fee title and easement lands. This 7,275,000 people* (hunting, fishing, and Continental Divide, including parts of includes 124 national wildlife refuges, wildlife watching) the sprawling Colorado Plateau and the 18 coordination areas, and numerous * USDA Economic Research Service Great Basin. The northeastern part of waterfowl production areas in 120 **FY 2011 National Survey of Fishing, the Region contains millions of shallow counties through Fiscal Year 2012. Hunting, and Wildlife-Associated wetlands known as the “prairie ■ 2,576,476 visitors to NWRS lands in Recreation potholes,” which produce a large portion Fiscal Year 2012. -
Conomic Consequences Ercury Toxicity to the Evelo Ln Rain
Cl1 conomic Consequences y ercury Toxicity to the evelo ln rain Public ealth and Economic Consequences of ethyl Mercury Toxicity to the evelo in rai Leonardo Trasande, 1,23,4 Philip J. Landrigan, 1,2 and Clyde Schechter5 'Center for Children's Health and the Environment, Department of Community and Preventive Medicine, and ZDepartment of Pediatrics, Mount Sinai School of Medicine, New York, New York, USA ; 3Division of General Pediatrics, Children's Hospital, Boston, Massachusetts, USA; 4Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA ; 5Department of Family Medicine, Albert Einstein College of Medicine, Bronx, New York, USA U.S. exposure levels. The first of these studies, Methyl mercury is a developmental neurotoxicant . Exposure results principally from consumption a cohort in New Zealand, found a 3-point by pregnant women of seafood contaminated by mercury from anthropogenic (70%) and natural decrement in the Wechsler Intelligence Scale- (30%) sources. Throughout the 1990s, the U.S. Environmental Protection Agency (EPA) made Revised (WISC-R) full-scale IQ among steady progress in reducing mercury emissions from anthropogenic sources, especially from power children born to women with maternal hair plants, which account for 41% of anthropogenic emissions . However, the U.S. EPA recently pro- mercury concentrations > 6 pg/g (Kjellstrom . posed to slow this progress, citing high costs of pollution abatement. To put into perspective the et al. 1986, 1989) . A second study in the costs of controlling emissions from American power plants, we have estimated the economic costs Seychelles Islands in the Indian Ocean found of methyl mercury toxicity attributable to mercury from these plants . -
Great Plains. in Respiration and Increase in Net Primary Productivity Due Source: Adapted from Anderson (1995) and Schaefer and Ball (1995)
Great Plains Gary Bentrup and Michele Schoeneberger Gary Bentrup is a research landscape planner, U.S. Department of Agriculture (USDA), Forest Service, USDA National Agroforestry Center; Michele Schoeneberger is research program lead and soil scientist (retired), USDA Forest Service, USDA National Agroforestry Center. Description of the Region generates a total market value of about $92 billion, approx- imately equally split between crop and livestock production Extending from Mexico to Canada, the Great Plains Region (USDA ERS 2012). Agricultural activities range in the northern covers the central midsection of the United States and is Plains from crop production, dominated by alfalfa, barley, corn, divided into the northern Plains (Montana, Nebraska, North hay, soybeans, and wheat to livestock production centered on Dakota, South Dakota and Wyoming) and the southern Plains beef cattle along with some dairy cows, hogs, and sheep. In (Kansas, Oklahoma, and Texas). This large latitudinal range the southern Plains, crop production is centered predominantly leads to some of the coldest and hottest average temperatures in on wheat along with corn and cotton, and extensive livestock the conterminous United States and also to a sharp precipitation production is centered on pastureland or rangelands and inten- gradient from east to west (fig. A.6). The region also experi- sive production in feedlots. Crop production is a mixture of 82 ences multiple climate and weather hazards, including floods, percent dryland and 18 percent irrigated cropland, with 34 and droughts, severe thunderstorms, rapid temperature fluctuations, 31 percent of total irrigated cropland in the region occurring in tornadoes, winter storms, and even hurricanes in the far Nebraska and Texas, respectively (USDA NRCS 2013). -
Planting and Care of Trees in South Dakota E
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Extension Circulars SDSU Extension 2-1936 Planting and Care of Trees in South Dakota E. R. Ware Follow this and additional works at: http://openprairie.sdstate.edu/extension_circ Recommended Citation Ware, E. R., "Planting and Care of Trees in South Dakota" (1936). Extension Circulars. Paper 355. http://openprairie.sdstate.edu/extension_circ/355 This Circular is brought to you for free and open access by the SDSU Extension at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Extension Circulars by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. Extension Circular 356 F'ebruary 1936 Planting and Care of TreeS:in0 J South Dakota Fig. 1.-Large specimen of a Russian olive tree. SOUTH DAKOTA STATE COLLEGE EXTENSION SERVICE A. M. Eberle, Director, Brookings, South Dakota ( South Dakota State Planning Board Board Members Forestation Committee W. R. Ronald, Mitchell, Chairman Robert D. Lusk, Huron, Chairman Robert D. Lusk, Huron, Vice Chair. Walter Webb, Mitchell S. H. Collins, Aberdeen, Secretary A. L. Ford, Brookings I. D. Weeks, Vermillion Theodore Krueger, Deadwood Theodore Reise, Mitchell Robert G. Fair, Huron Nick Caspers, Rapid City Emil Loriks, Arlington Judge J. R. Cash, Bonesteel Theo W osnuk, Aberdeen Dr. P. B. Jenkins, Pierre C. A. Russell, Pierre Dr. James C. Clark, Sioux Falls Dr. Chas. W. Pugsley, Consultant Charles Entsminger, Chamberlain Dr. T. H. Cox, Associate Consultant Charles Trimmer, Pierre Walter Slocum, Researc;h Assistant EXPLANATION OF COVER CUT Fig. -
Clear Skies in Louisiana1
The information presented here reflects EPA's modeling of the Clear Skies Act of 2002. The Agency is in the process of updating this information to reflect modifications included in the Clear Skies Act of 2003. The revised information will be posted on the Agency's Clear Skies Web site (www.epa.gov/clearskies) as soon as possible. CLEAR SKIES IN LOUISIANA1 Human Health and Environmental Benefits of Clear Skies: Clear Skies would protect human health, improve air 2 quality, and reduce deposition of sulfur dioxide (SO2), nitrogen oxides (NOx), and mercury. • Beginning in 2020, over $1 billion of the annual benefits of Clear Skies would occur in Louisiana. Every year, these would include: Clear Skies Benefits Nationwide � approximately 200 fewer premature deaths; � over 100 fewer cases of chronic bronchitis; • In 2020, annual health benefits from � over 7,000 fewer days with asthma attacks reductions in ozone and fine particles � approximately 200 fewer hospitalizations and emergency would total $93 billion, including 12,000 room visits; fewer premature deaths, far outweighing � over 32,000 fewer days of work lost due to respiratory the $6.49 billion cost of the Clear Skies symptoms; and program. � approximately 250,000 fewer total days with respiratory- • Using an alternative methodology results related symptoms. in over 7,000 premature deaths prevented and $11 billion in benefits by • Currently, all parishes in Louisiana are expected to meet the 2020—still exceeding the cost of the annual fine particle standard; 10 parishes are not expected to program.3 meet the 8-hour ozone standard. • Clear Skies would provide an additional � However, based on initial modeling, 3 parishes are $3 billion in benefits due to improved projected to exceed the annual fine particle standard by visibility in National Parks and wilderness 4 2020 under the existing Clean Air Act. -
The University of Oklahoma Graduate
THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE RESPONSES OF BELOWGROUND CARBON DYNAMICS TO WARMING IN SOUTHERN GREAT PLAINS A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By XIA XU Norman, Oklahoma 2012 RESPONSES OF BELOWGROUND CARBON DYNAMICS TO WARMING IN SOUTHERN GREAT PLAINS A DISSERTATION APPROVED FOR THE DEPARTMENT OF BOTANY AND MICROBIOLOGY BY Dr. Yiqi Luo, Chair Dr. Aondover A. Tarhule Dr. Michael H. Engel Dr. Lawrence J. Weider Dr. Jizhong Zhou © Copyright by XIA XU 2012 All Rights Reserved. To my mother, Lijuan Mei. ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Yiqi Luo, for his taking me in and giving me a chance to accomplish my goal. I have benefited from his excellent advice and guidance on my research in the past four years. Without his financial support, encouragement, and critical comments, this work would not have been finished. I would like to extend my gratitude to Drs. Aondover A. Tarhule, Michael H. Engel, Lawrence J. Weider, and Jizhong Zhou, and for their advice, support, and willingness to serve on my advisory committee. Their classes, training, and advice have always been insightful and invaluable for my graduate study. Special thanks to Dr. Rebecca A. Sherry for her stay on my advisory committee in the first two years and her help with English and making sure the experimental sites are running and functional. Many thanks to the present and former members of Dr. Luo’s Ecolab for their help and providing an enjoyable working atmosphere.