United States Patent Office Patented June 22, 1971 2 Mixture to Aid in Securing High Yields from the Present 3,586,708 Process

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented June 22, 1971 2 Mixture to Aid in Securing High Yields from the Present 3,586,708 Process 3,586,708 United States Patent Office Patented June 22, 1971 2 mixture to aid in Securing high yields from the present 3,586,708 proceSS. ARSANLIC ACTED PRODUCTION PROCESS Joseph W. Nemec, Rydal, and Harry R. Raterink, Drexel The invention consists in the novel methods, processes Hill, Pa., and Stanley W. Wise, Audubon, N.J., as and improvements shown and described. It is to be under signors to Rohm and Haas Company, Philadelphia, Pa. 5 stood that both the foregoing general description and the No Drawing. Filed May 1, 1969, Ser. No. 821,142 following detailed description are exemplary and ex Int. C. C07f 9/76, 9/78 planatory, but are not restrictive of the invention. U.S. C. 260-442 12 Clains In the present process, as in many prior art processes, arsenic acid is caused to react with an excess of aniline to O produce the desired arsanilic acid product. However, un ABSTRACT OF THE DISCLOSURE like prior art processes, the reaction conditions of the present process do not minimize the side reaction which A process is provided for preparing arsanilic acid in produces di-(-aminophenyl) arsenic acid. Instead, this yields of about 45% or higher, based on the weight of compound is also produced during the first reaction, along arsenic acid reactant, by reacting arsenic acid and aniline with arsanilic acid. In a subsequent step of the present at a temperature of about 130 to 180° C. in the presence process, di-(p-aminophenyl) arsenic acid is converted into of a chelating agent and a solvent which forms an azeo arsanilic acid, thereby maximizing the yield of the desired tropic distillate with water formed in the reaction. This product. reaction produces a mixture of arsanilic acid and di-(p- The mol ratios of aniline to arsenic acid used in ac aminophenyl) arsenic acid, and the latter is converted cordance with the present process can be varied rather to arsanilic acid by hydrolysis at an acid pH of about widely while still achieving satisfactory results. Thus, 2 to 3. product yields vary little with variations of aniline/arsenic acid molar ratios between 2 to 1 and 5.5 to 1. As the This invention relates to the production of arsanilic proportion of aniline to arsenic acid is lowered within this acid. More particularly, it relates to a process that achieves 25 range, however, difficulties may be encountered in separa high yields of arsanilic acid by the reaction of arsenic acid tion of the excess aniline phase from the product phase with aniline in the presence of a solvent. of the reaction mixture, and moreover, the reaction mass Para-aminophenyl arsenic acid, commonly known as tends to become rather viscous and difficult to agitate. For 'arsanilic acid,” is a well-known and widely used organic these reasons, ratios of aniline to arsenic acid between 3 arsenic compound. Arsanilic acid and related compounds 30 to 1 and 5 to 1 are preferred, with a ratio of about 4 to 1 prepared from it are used, for example, in the veterinary being considered optimum. field to stimulate growth, control parasites in fowl and In accordance with the invention, the aniline-arsenic SWine, and to increase egg production from fowl. For ex acid reaction is carried out in the presence of a solvent ample, arsanilic acid reacts with potassium cyanate to which forms an azeotropic distillate with water present in yield N-carbamoyl-arSanilic acid, or carbarsome, which the reaction. The reaction mixture contains water from is used, e.g., as an intestinal amebicide and to treat histo two sources. Water is present in the reactants initially moniasis in turkeys. added to the reaction vessel, and water is also formed as It has been difficult in the past, however, to achieve a by-product of the reaction. Since the reaction is carried efficient and economical production of arsanilic acid be out at highly elevated temperatures, the water present cause of the relatively low efficiency of the reactions used 40 from both sources is distilled or boiled off during the in its preparation, in terms of the percentage of the re reaction. actants converted to the desired arsanilic acid product. Al The inclusion in the reaction mixture of a solvent that though claims of higher yields have been made, it has gen form an azeotropic distillate with water in accordance erally been possible to achieve only about 25% con with the present process achieves a number of important version of arsenic acid to arsanilic acid by commercially advantages. If offers a means for controlling the reaction useful prior art processes. temperature by the refluxing system, and a means for It is accordingly an object of the present invention to more readily following and terminating the reaction on provide an improved, and more efficient and economical the basis of measurement of the water eliminated. The process for the production of arsanilic acid. 50 inclusion of the solvent provides an inert operating atmos It is another object of the present invention to provide a phere and prevents aniline removal during the reaction. new and improved process for the production of arsanilic Thus, in accordance with this invention there is no need acid which can be carried out with relatively minor modi for concern that the ratio of aniline to arsenic acid ratio fication of the equipment used in present-day commercial in the reaction mixture may be unduly lowered; and the arsanilic acid production processes, but which achieves present process can be successfully operated at aniline to much greater process efficiency, and greater product yields arsenic acid mol ratios which are lower than those hereto than Such present-day commercial processes. fore employed. These objects are achieved in the present invention. The presence of the solvent causes a better and cleaner through the use of a novel, solvent process for the produc separation of the aniline layer from the aqueous solution tion of arsanilic acid. This process comprises reacting 60 of reaction product present in the reaction mixture, and arsenic acid with an excess of aniline at a reaction tem generally achieves better color in both layers. The presence perature of about 130 to 180° C. in the presence of a of the solvent in the aniline phase of the reaction product solvent which forms an azeotropic distillate with water also affords a means of drying the recovered aniline prior formed in the reaction, to produce a mixture of arsanilic to its recycle. acid and di-(p-aminophenyl) arsenic acid. The mixture is Most important, the presence of the solvent in the then preferably diluted with water and the pH is desirably aniline-arsenic acid reaction mixture has been found to adjusted to about 8.5 to 10. After the aniline layer is re result in unexpectedly improved yields of arsanilic acid moved, the aqueous layer is adjusted to a pH not greater product. The present process realizes yields in the range than about 3.0 and then refluxed to hydrolyze the di-(p- of 45 to 50% conversion of arsenic acid reactant to aminophenyl) arsenic acid and convert it to arsanilic acid. 70 arsanilic acid. It is believed that these improved yields In accordance with a preferred aspect of the present inven are, at least in part, a result of the more efficient tion, a chelating agent is also incorporated in the reaction water removal achieved by the azeotropic distillation of 3,586,708 3. 4. reaction witer in the process of this invention, which invention minimizes the catalytic effect of heavy metal allows the reaction to proceed at a fast than normal rate. impurities, such as copper, on the oxidation of the aniline Any solvent which forms an azeotropic distillate with in the reaction mixture, thereby allowing the effective use water can be used as the solvent or azeotroping agent in of higher temperatures in the reaction without undesir cluded in the reaction mixture in accordance With the able levels of aniline oxidation. The use of higher reac present process. Toluene, benzene, Xylene, and octane, for tion temperatures accelerates the speed of the reaction example, can be satisfactorily used. It is preferred, how and the speed of water removal, and thereby contributes ever, to use less flammable solvents such as perchloro to the achievement of the high yields of the present ethylene, perfluoroethylene, chlorobenzene, and ethylene proceSS. dichloride. Perchloroethylene is presently considered an O The aniline-arsenic acid reaction of the present process optimum azeotroping solvent for use in this process. produces a reaction product which comprises a mixture The amount of solvent or azeotroping agent included of arsanilic acid and di-(p-aminophenyl) arsenic acid. In in the reaction mixture is small-only about 5 to 15 fact, the use of the process of this invention causes greatly weight percent based on the arsenic acid charged to the increased conversion of the arsenic acid reactant to di reaction. The azeotroping solvent preferably is present (p-aminophenyl) arsenic acid, rather than arsanilic acid. in the reaction mixture in amounts between about 8 and The present process, however, provides for the conver 9% by weight of the arsenic acid reactant. Sion of this di(p-aminophenyl) arsenic acid to arsanilic The present process is carried out at a reaction temper acid, and thereby uses this mechanism to achieve higher ature between about 130 and 180° C. The process pref overall conversion of arsenic acid reactant to ultimate erably includes a high temperature reaction in which the product, reaction mixture is heated at a temperature of about 173 The mechanism by which arsanilic acid is produced in to 175° C.
Recommended publications
  • Arsinothricin, an Arsenic-Containing Non-Proteinogenic Amino Acid Analog of Glutamate, Is a Broad-Spectrum Antibiotic
    ARTICLE https://doi.org/10.1038/s42003-019-0365-y OPEN Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic Venkadesh Sarkarai Nadar1,7, Jian Chen1,7, Dharmendra S. Dheeman 1,6,7, Adriana Emilce Galván1,2, 1234567890():,; Kunie Yoshinaga-Sakurai1, Palani Kandavelu3, Banumathi Sankaran4, Masato Kuramata5, Satoru Ishikawa5, Barry P. Rosen1 & Masafumi Yoshinaga1 The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits gluta- mine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the per- vasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors. 1 Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA. 2 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán T4001MVB, Argentina. 3 SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Multi-Residue Determination of Organic Arsenical Drugs in Feeds by LC-MS/MS
    Multi-Residue Determination of Organic Arsenical Drugs in Feeds by LC-MS/MS Geneviève Grenier, Melanie Titley & Lise-Anne Prescott AAFCO Laboratory Methods and Services Committee meeting 2016-01-18 Background • Animal Feed Division of CFIA identified a high priority need for the determination of three organic arsenicals (arsanilic acid, roxarsone and nitarsone) at residue levels in animal feed • These are withdrawal drugs and are priority food contaminants • Current test methods are at guarantee levels greater than 10% minimum use rate • Therefore, current methods not well suited for residue or traceback testing • Requested feed residue LOQ of 1 mg/kg for all three organic arsenicals 2 Background • UHPLC-PDA Challenges • Extract were very dirty • Tried sample clean-up using Oasis MAX SPE • Still very dirty • HPLC Challenges • Compounds elute too easily • Analytical column must : retain and separate compounds, and give good peak shape • Analytical column : Phenomenex Onyx Monolithic C18 100 X 3.0mm 3 Background • LC/MS/MS method (positive mode) • Column: Phenomenex Onyx Monolithic C18 100 X 3.0mm • Linearity problems with Internal Standard (IS) • Internal standard – 4-hydroxyphenylarsonic acid • Peak area of the internal standard increased with increasing analyte concentration • Cause • 4-hydroxyphenyl arsanic acid co-elute with Arsanilic acid and have similar m/z 4 New method - summary • Liquid chromatography combined with atomic and molecular mass spectrometry for speciation of arsenic in chicken liver. Peng et. al., Journal of Chromatography
    [Show full text]
  • CHEM 301 Assignment #2 Provide Solutions to the Following Questions in a Neat and Well-Organized Manner
    CHEM 301 Assignment #2 Provide solutions to the following questions in a neat and well-organized manner. Reference data sources for any constants and state assumptions, if any. Due date: Thursday, Oct 20th, 2016 Attempt all questions. Only even numbers will be assessed. 1. A pond in an area affected by acid mine drainage is observed to have freshly precipitated Fe(OH)3(s) at pH 4. What is the minimum value of pe in this water? Use the appropriate pe-pH speciation diagram to predict the dominant chemical speciation of carbon, sulfur and copper under these conditions. 2. The solubility of FeS(s) in marine sediments is expected to be affected by the pH and the [H2S(aq)] in the surrounding pore water? Calculate the equilibrium concentration of Fe2+ (ppb) at pH 5 and pH 8, -3 assuming the H2S is 1.0 x 10 M. pKsp(FeS) = 16.84. + 2+ FeS(s) + 2 H (aq) ==== Fe (aq) + H2S 3. Boric acid is a triprotic acid (H3BO3); pKa1 = 9.24, pKa2 = 12.74 and pKa3 = 13.80. a) Derive an expression for the fractional abundance of H3BO3 as a function of pH b) Construct a fully labeled pH speciation diagram for boric acid over the pH range of 0 to 14 using Excel spreadsheet at a 0.2 pH unit interval. 4. At pCl- = 2.0, Cd2+ and CdCl+ are the only dominant cadmium chloride species with a 50% fractional abundance of each. + a) Calculate the equilibrium constant for the formation of CdCl (1). + - b) Derive an expression for the fractional abundance of CdCl as a function of [Cl ] and 1 – 4 for cadmium chloro species.
    [Show full text]
  • Inorganic Arsenic Compounds Other Than Arsine Health and Safety Guide
    OS INTERNATiONAL I'ROGRAMME ON CHEMICAL SAFETY Health and Safety Guide No. 70 INORGANIC ARSENIC COMPOUNDS OTHER THAN ARSINE HEALTH AND SAFETY GUIDE i - I 04 R. Q) UNEP UNITED NATIONS INTERNATIONAL ENVIRONMENT I'R( )GRAMME LABOUR ORGANISATION k\s' I V WORLD HEALTH ORGANIZATION WORLD HEALTH ORGANIZATION, GENEVA 1992 IPcs Other H EA LTH AND SAFETY GUIDES available: Aerytonitrile 41. Clii rdeon 2. Kekvau 42. Vatiadiuni 3 . I Bula not 43 Di meLhyI ftirmatnide 4 2-Buta101 44 1-Dryliniot 5. 2.4- Diehlorpheiioxv- 45 . Ac rylzi mule acetic Acid (2.4-D) 46. Barium 6. NIcihylene Chhride 47. Airaziiie 7 . ie,i-Buia nol 48. Benlm'.ie 8. Ep Ichioroli) Olin 49. Cap a 64 P. ls.ihutaiiol 50. Captaii I o. feiddin oeth N lene Si. Parai.tuat II. Tetradi ion 51 Diquat 12. Te nacelle 53. Alpha- and Betal-lexachloro- 13 Clils,i (lane cyclohexanes 14 1 kpia Idor 54. Liiidaiic IS. Propylene oxide 55. 1 .2-Diciilroetiiane Ethylene Oxide 5t. Hydrazine Eiulosiillaii 57. F-orivaldehydc IS. Die h lorvos 55. MLhyI Isobu I V I kcloiic IV. Pculaehloro1heiiol 59. fl-Flexaric 20. Diiiiethoaie 61), Endrin 2 1 . A iii in and Dick) 0in 6 I . I sh IIZiLI1 22. Cyperniellirin 62. Nicki. Nickel Caution I. and some 23. Quiiiloieiic Nickel Compounds 24. Alkthrins 03. Hexachlorocyclopeuladiene 25. Rsiiiethii ins 64. Aidicaib 26. Pyr rot ii,id inc Alkaloids 65. Fe nitrolhioit 27. Magnetic Fields hib. Triclilorlon 28. Phosphine 67. Acroleiii 29. Diiiiethyl Sull'ite 68. Polychlurinated hiphenyls (PCBs) and 30. Dc lianteth nil polyc h In ruiated letlilienyls (fs) 31.
    [Show full text]
  • National Center for Toxicological Research (NCTR) Science Advisory Board (SAB)
    National Center for Toxicological Research (NCTR) Science Advisory Board (SAB) November 2, 2016 Crowne Plaza 201 S. Shackleford Road Little Rock, AR 72211 TABLE OF CONTENTS FDA Center Perspectives 1 Center for Biologics Evaluation and Research Center for Drug Evaluation and Research Center for Devices and Radiological Health Center for Tobacco Products Center for Veterinary Medicine Office of Regulatory Affairs Discussion of NCTR Research (SAB Members) 120 1 P R O C E E D I N G S Agenda Item: FDA Center Perspectives DR. PHILBERT: Good morning. Our first presentation in a series from our colleagues at FDA is from Carolyn, Center for Biologics Evaluation and Research. DR. WILSON: Good morning. Thank you. I am going to start with an overview of the products we regulate just to orient some of you who may be new on the advisory board. Then I will go into the priorities for our scientific research program, as well as some examples of ongoing and potential future collaborations with NCTR. We regulate what are called complex biologic products, so things like monoclonal antibodies and most recombinant proteins are regulated in the Center for Drugs. But we regulate things like blood, blood components and derivatives, vaccines both preventative and therapeutic, the novel areas like cell and gene therapies, including stem cells, and that does include things like CRISPR modification of cells. Certain human tissues, live biotherapeutics and, yes, that includes fetal transplantation, allergenic products which actually, although that is a single line, represents over 1200 different extracts that are used both for diagnosis 2 and treatment of allergies, and then certain related devices, as well.
    [Show full text]
  • Code Chemical P026 1-(O-Chlorophenyl)Thiourea P081 1
    Code Chemical P026 1-(o-Chlorophenyl)thiourea P081 1,2,3-Propanetriol, trinitrate (R) P042 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, (R)- P067 1,2-Propylenimine P185 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)- carbonyl]oxime 1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexa- chloro-1,4,4a,5,8,8a,-hexahydro-, P004 (1alpha,4alpha, 4abeta,5alpha,8alpha,8abeta)- 1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10-hexa- chloro-1,4,4a,5,8,8a-hexahydro-, P060 (1alpha,4alpha, 4abeta,5beta,8beta,8abeta)- P002 1-Acetyl-2-thiourea P048 2,4-Dinitrophenol P051 2,7:3,6-Dimethanonaphth [2,3-b]oxirene, 3,4,5,6,9,9 -hexachloro-1a,2,2a,3,6,6a,7,7a- octahydro-, (1aalpha,2beta,2abeta,3alpha,6alpha,6abeta,7 beta, 7aalpha)-, & metabolites 2,7:3,6-Dimethanonaphth[2,3-b]oxirene, 3,4,5,6,9,9- hexachloro-1a,2,2a,3,6,6a,7,7a- P037 octahydro-, (1aalpha,2beta,2aalpha,3beta,6beta,6aalpha,7 beta, 7aalpha)- P045 2-Butanone, 3,3-dimethyl-1-(methylthio)-, O-[methylamino)carbonyl] oxime P034 2-Cyclohexyl-4,6-dinitrophenol 2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1- phenylbutyl)-, & salts, when present at P001 concentrations greater than 0.3% P069 2-Methyllactonitrile P017 2-Propanone, 1-bromo- P005 2-Propen-1-ol P003 2-Propenal P102 2-Propyn-1-ol P007 3(2H)-Isoxazolone, 5-(aminomethyl)- P027 3-Chloropropionitrile P047 4,6-Dinitro-o-cresol, & salts P059 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro- 3a,4,7,7a-tetrahydro- P008 4-Aminopyridine P008 4-Pyridinamine P007 5-(Aminomethyl)-3-isoxazolol 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10-
    [Show full text]
  • Chemical Equilibrium and Reaction Modeling of Arsenic and Selenium in Soils
    3 Chemical Equilibrium and Reaction Modeling of Arsenic and Selenium in Soils Sabine Goldberg CONTENTS Inorganic Chemistry of As and Se in Soil Solution .......................................... 66 Methylation and Volatilization Reactions ......................................................... 66 Precipitation-Dissolution Reactions .................................................................. 68 Oxidation-Reduction Reactions .......................................................................... 68 Adsorption-Desorption Reactions ..................................................................... 69 Modeling of Adsorption by Soils: Empirical Models ...................................... 70 Modeling of Adsorption by Soils: Constant Capacitance ModeL................ 72 Summary................................................................................................................ 86 References ............................................................................................................... 87 High concentrations of the trace elements arsenic (As) and selenium (Se) in soils pose a threat to agricultural production and the health of humans and animals. As is toxic to both plants and animals. Se, despite being an essential micronutrient for animal nutrition, is potentially toxic because the concentra­ tion range between deficiency and toxicity in animals is narrow. Seleniferous soils release enough Se to produce vegetation toxic to grazing animals. Such soils occur in the semiarid states of the western United
    [Show full text]
  • Bacterial Mechanisms of Toxicity and Resistance to Organoarsenicals
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-13-2020 Bacterial Mechanisms of Toxicity and Resistance to Organoarsenicals Luis D. Garbinski Florida International University, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biochemistry Commons, Environmental Microbiology and Microbial Ecology Commons, and the Molecular Biology Commons Recommended Citation Garbinski, Luis D., "Bacterial Mechanisms of Toxicity and Resistance to Organoarsenicals" (2020). FIU Electronic Theses and Dissertations. 4549. https://digitalcommons.fiu.edu/etd/4549 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida BACTERIAL MECHANISMS OF TOXICITY AND RESISTANCE TO ORGANOARSENICALS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOMEDICAL SCIENCES by Luis D Garbinski 2020 To: Dean Robert Sackstein Herbert Wertheim College of Medicine This dissertation, written by Luis D Garbinski, and entitled Bacterial Mechanisms of Toxicity and Resistance to Organoarsenicals, having been approved in respect to style and intellectual content, is referred to you for judgement. We have read this dissertation and recommend that it be approved. _______________________________________ Irina Agoulnik _______________________________________ Jun-yong Choe _______________________________________ Krishnaswamy Jayachandran _______________________________________ Masafumi Yoshinaga, Co-Major Professor _______________________________________ Barry Rosen, Co-Major Professor Date of Defense: November 11, 2020 The dissertation of Luis D Garbinski is approved.
    [Show full text]
  • SDS US 1AB Version #: 07 Revision Date: 07-17-2019 Issue Date: 08-26-2013 1 / 9 Precautionary Statement Prevention Obtain Special Instructions Before Use
    SAFETY DATA SHEET 1. Identification Product identifier Arsenic acid Other means of identification SDS number 1AB Materion Code 1AB CAS number 7778-39-4 Synonyms ARSENIC ACID Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name Materion Advanced Chemicals Inc. Address 407 N 13th Street 1316 W. St. Paul Avenue Milwaukee, WI 53233 United States Telephone 414.212.0257 E-mail [email protected] Contact person Laura Hamilton Emergency phone number Chemtrec 800.424.9300 2. Hazard(s) identification Physical hazards Not classified. Health hazards Acute toxicity, oral Category 2 Skin corrosion/irritation Category 1 Serious eye damage/eye irritation Category 1 Germ cell mutagenicity Category 2 Carcinogenicity Category 1A Reproductive toxicity Category 2 Specific target organ toxicity, repeated Classification not possible exposure Environmental hazards Hazardous to the aquatic environment, acute Category 1 hazard Hazardous to the aquatic environment, Category 1 long-term hazard OSHA defined hazards Not classified. Label elements Signal word Danger Hazard statement Fatal if swallowed. May cause cancer. Causes severe skin burns and eye damage. Causes serious eye damage. Toxic if inhaled. Suspected of causing genetic defects. May cause cancer. Suspected of damaging fertility or the unborn child. Very toxic to aquatic life. Very toxic to aquatic life with long lasting effects. Material name: Arsenic acid SDS US 1AB Version #: 07 Revision date: 07-17-2019 Issue date: 08-26-2013 1 / 9 Precautionary statement Prevention Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not breathe mist/vapors. Do not breathe dust/fume/gas/mist/vapors. Wash thoroughly after handling.
    [Show full text]
  • Photooxidation of P-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process
    applied sciences Communication Photooxidation of p-Arsanilic Acid in Aqueous Solution by UV/Persulfate Process Xiangyi Shen 1, Jing Xu 2,*, Ivan P. Pozdnyakov 3,4 and Zizheng Liu 5,* ID 1 Department of Environmental Science, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China; [email protected] 2 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China 3 Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia; [email protected] 4 Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia 5 School of Civil Engineering, Wuhan University, Wuhan 430072, China * Correspondence: [email protected] (J.X.); [email protected] (Z.L.) Received: 26 February 2018; Accepted: 4 April 2018; Published: 13 April 2018 Abstract: Used as a kind of feed additive, p-arsanilic acid can pose a potential risk to organisms when abandoned in the environment. The photodegradation of p-ASA was investigated under UV-C irradiation in the presence of persulfate (PS) in this work. The addition of PS facilitated the decomposition of p-ASA and notably, the presence of 50 mmol PS brought about a nearly complete mineralization after 3 h, while an insignificant total organic carbon (TOC) removal was observed − under UV irradiation (λ = 254 nm) only. Experimental results proved that sulfate radical (SO4• ) was responsible for the promotion effect. The cleavage of As-C bond released inorganic arsenic and caused the occurrence of various organic products, for example, hydroxybenzaldehyde, nitrobenzene, benzenediol sulfate, and biphenylarsinic acid. The application of PS with UV-C light may throw a light on thorough treatment for p-ASA containing wastewater.
    [Show full text]
  • Arsenic (As33)
    NANO3D SYSTEMS LLC 1110 NE Circle Blvd., ATAMI/Bldg. 11, Corvallis, Oregon 97330-4254 T 503-927-4766| F 541-758-9320| http://www.nano3dsystems.com Arsenic (As33) Properties Arsenic is a silvery-white metalloid with an atomic mass of 74.92 u. As has a density of 5.73 g/cm3, a melting point of 814 oC, and a Brinell hardness of 1440 MPa. The most common compounds have As in the +3 and +5 states, while it also exists in other oxidation states such as -3, -2, -1, +1, +2, +4. Its standard electrode potential in respect to As+3 is +0.3V. Though stable in dry air, arsenic forms a golden-bronze tarnish upon exposure to humidity which eventually becomes a black surface layer. Arsenic makes arsenic acid with concentrated nitric acid, arsenous acid with dilute nitric acid, and arsenic trioxide with concentrated sulfuric acid. It does not react with water, alkalis, or non-oxidizing acids. As is estimated to be at average concentration of 1.5 parts per million (ppm) in the Earth's crust. Plating Solutions Arsenic can be electrochemically deposited from aqueous electrolytes, containing in g/l: a) Example #1. Arsenic trioxide – 90, sodium hydroxide – 110 ml/l, potassium sodium tartrate tetrahydrate (Rochelle salt) - 80 with pH ~8 at temperature of 15-25 oC, current density of 10 – 20 mA/cm2 and current efficiency of ~100%. b) Example #2. Arsenic trioxide – 120, sodium cyanide – 3.7, sodium hydroxide – 120 at temperature of 15-25 oC and current density of 3 – 22 mA/cm2. Arsenic clectrodeposition can be also performed from choline chloride/ethylene glycol deep eutectic solvent [1].
    [Show full text]