20-Finding Taylor Coefficients

Total Page:16

File Type:pdf, Size:1020Kb

20-Finding Taylor Coefficients Taylor Coefficients Learning goal: Let’s generalize the process of finding the coefficients of a Taylor polynomial. Let’s find a general formula for the coefficients of a Taylor polynomial. (Students complete worksheet series03 (Taylor coefficients).) 2 What we have discovered is that if we have a polynomial C0 + C1x + C2x + ! that we are trying to match values and derivatives to a function, then when we differentiate it a bunch of times, we 0 get Cnn!x + Cn+1(n+1)!x + !. Plugging in x = 0 and everything except Cnn! goes away. So to (n) match the nth derivative, we must have Cn = f (0)/n!. If we want to match the values and derivatives at some point other than zero, we will use the 2 polynomial C0 + C1(x – a) + C2(x – a) + !. Then when we differentiate, we get Cnn! + Cn+1(n+1)!(x – a) + !. Now, plugging in x = a makes everything go away, and we get (n) Cn = f (a)/n!. So we can generate a polynomial of any degree (well, as long as the function has enough derivatives!) that will match the function and its derivatives to that degree at a particular point a. We can also extend to create a power series called the Taylor series (or Maclaurin series if a is specifically 0). We have natural questions: • For what x does the series converge? • What does the series converge to? Is it, hopefully, f(x)? • If the series converges to the function, we can use parts of the series—Taylor polynomials—to approximate the function, at least nearby a. How good an approximation is it? How many terms do we need to give a certain accuracy? • Can we use the series in integral and derivative problems? Notice that if the series converges to the function, we can use any accuracy test, such as the simple alternating series test, to answer questions like the above. Otherwise, we will have to use more sophisticated tools…. (More practice: series04) A nice way to lay out the calculations is to make a table of coefficients. That way if there are patterns they are easier to spot. Example: compute the Maclaurin series for sin(x). First, we lay out a table with n, f(n)(x), f(n)(0), and then divide by n! to get the coefficient: n f(n)(x) f(n)(0) Coefficient 0 sin(x) 0 0 1 cos(x) 1 1/1! = 1 2 – sin(x) 0 0 3 –cos(x) –1 1/3! = 1/6 4 sin(x) 0 0 5 cos(x) 1 1/5! 6 – sin(x) 0 0 So we can easily create the sixth degree Maclaurin polynomial x – x3/3! + x5/5!, and it appears the series will continue with just odd terms, alternating in sign. Notice that the sixth degree polynomial is identical with the fifth degree polynomial! 1/2 Example: Try the Taylor expansion for x = x . Notice that working near zero is a disaster, because the derivative isn’t defined at zero. Let’s work near x = 4. n f(n)(x) f(n)(4) Coefficient 0 1/2 2 2 x = x 1 1 x−1/2 1/4 1/4 2 2 1 −1 x−3/2 –1/32 –1/(32⋅2) = –1/64 2 ⋅ 2 3 1 −1 −3 x−5/2 3/256 3/(256⋅6) = 1/512 2 ⋅ 2 ⋅ 2 4 1 ⋅ −1 ⋅ −3 ⋅ −5 x−7/2 –15/(16⋅128) –5/16768 2 2 2 2 1/2 So the fourth degree Taylor expansion of x = x about x = 4 is (x − 4) (x − 4)2 (x − 4)3 5(x − 4)4 2 + − + − and it appears to get messier from there. There is 4 64 512 16768 probably something nice you can do with the coefficients with multiplying odd numbers and powers of two and alternating, but it seems unnecessary right this instant…. .
Recommended publications
  • Topic 7 Notes 7 Taylor and Laurent Series
    Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7.1 Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove Cauchy's theorem and Cauchy's integral formula. These revealed some deep properties of analytic functions, e.g. the existence of derivatives of all orders. Our goal in this topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When a complex function has an isolated singularity at a point we will replace Taylor series by Laurent series. Not surprisingly we will derive these series from Cauchy's integral formula. Although we come to power series representations after exploring other properties of analytic functions, they will be one of our main tools in understanding and computing with analytic functions. 7.2 Geometric series Having a detailed understanding of geometric series will enable us to use Cauchy's integral formula to understand power series representations of analytic functions. We start with the definition: Definition. A finite geometric series has one of the following (all equivalent) forms. 2 3 n Sn = a(1 + r + r + r + ::: + r ) = a + ar + ar2 + ar3 + ::: + arn n X = arj j=0 n X = a rj j=0 The number r is called the ratio of the geometric series because it is the ratio of consecutive terms of the series. Theorem. The sum of a finite geometric series is given by a(1 − rn+1) S = a(1 + r + r2 + r3 + ::: + rn) = : (1) n 1 − r Proof.
    [Show full text]
  • 1 Approximating Integrals Using Taylor Polynomials 1 1.1 Definitions
    Seunghee Ye Ma 8: Week 7 Nov 10 Week 7 Summary This week, we will learn how we can approximate integrals using Taylor series and numerical methods. Topics Page 1 Approximating Integrals using Taylor Polynomials 1 1.1 Definitions . .1 1.2 Examples . .2 1.3 Approximating Integrals . .3 2 Numerical Integration 5 1 Approximating Integrals using Taylor Polynomials 1.1 Definitions When we first defined the derivative, recall that it was supposed to be the \instantaneous rate of change" of a function f(x) at a given point c. In other words, f 0 gives us a linear approximation of f(x) near c: for small values of " 2 R, we have f(c + ") ≈ f(c) + "f 0(c) But if f(x) has higher order derivatives, why stop with a linear approximation? Taylor series take this idea of linear approximation and extends it to higher order derivatives, giving us a better approximation of f(x) near c. Definition (Taylor Polynomial and Taylor Series) Let f(x) be a Cn function i.e. f is n-times continuously differentiable. Then, the n-th order Taylor polynomial of f(x) about c is: n X f (k)(c) T (f)(x) = (x − c)k n k! k=0 The n-th order remainder of f(x) is: Rn(f)(x) = f(x) − Tn(f)(x) If f(x) is C1, then the Taylor series of f(x) about c is: 1 X f (k)(c) T (f)(x) = (x − c)k 1 k! k=0 Note that the first order Taylor polynomial of f(x) is precisely the linear approximation we wrote down in the beginning.
    [Show full text]
  • A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
    A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]
  • Operations on Power Series Related to Taylor Series
    Operations on Power Series Related to Taylor Series In this problem, we perform elementary operations on Taylor series – term by term differen­ tiation and integration – to obtain new examples of power series for which we know their sum. Suppose that a function f has a power series representation of the form: 1 2 X n f(x) = a0 + a1(x − c) + a2(x − c) + · · · = an(x − c) n=0 convergent on the interval (c − R; c + R) for some R. The results we use in this example are: • (Differentiation) Given f as above, f 0(x) has a power series expansion obtained by by differ­ entiating each term in the expansion of f(x): 1 0 X n−1 f (x) = a1 + a2(x − c) + 2a3(x − c) + · · · = nan(x − c) n=1 • (Integration) Given f as above, R f(x) dx has a power series expansion obtained by by inte­ grating each term in the expansion of f(x): 1 Z a1 a2 X an f(x) dx = C + a (x − c) + (x − c)2 + (x − c)3 + · · · = C + (x − c)n+1 0 2 3 n + 1 n=0 for some constant C depending on the choice of antiderivative of f. Questions: 1. Find a power series representation for the function f(x) = arctan(5x): (Note: arctan x is the inverse function to tan x.) 2. Use power series to approximate Z 1 2 sin(x ) dx 0 (Note: sin(x2) is a function whose antiderivative is not an elementary function.) Solution: 1 For question (1), we know that arctan x has a simple derivative: , which then has a power 1 + x2 1 2 series representation similar to that of , where we subsitute −x for x.
    [Show full text]
  • Derivative of Power Series and Complex Exponential
    LECTURE 4: DERIVATIVE OF POWER SERIES AND COMPLEX EXPONENTIAL The reason of dealing with power series is that they provide examples of analytic functions. P1 n Theorem 1. If n=0 anz has radius of convergence R > 0; then the function P1 n F (z) = n=0 anz is di®erentiable on S = fz 2 C : jzj < Rg; and the derivative is P1 n¡1 f(z) = n=0 nanz : Proof. (¤) We will show that j F (z+h)¡F (z) ¡ f(z)j ! 0 as h ! 0 (in C), whenever h ¡ ¢ n Pn n k n¡k jzj < R: Using the binomial theorem (z + h) = k=0 k h z we get F (z + h) ¡ F (z) X1 (z + h)n ¡ zn ¡ hnzn¡1 ¡ f(z) = a h n h n=0 µ ¶ X1 a Xn n = n ( hkzn¡k) h k n=0 k=2 µ ¶ X1 Xn n = a h( hk¡2zn¡k) n k n=0 k=2 µ ¶ X1 Xn¡2 n = a h( hjzn¡2¡j) (by putting j = k ¡ 2): n j + 2 n=0 j=0 ¡ n ¢ ¡n¡2¢ By using the easily veri¯able fact that j+2 · n(n ¡ 1) j ; we obtain µ ¶ F (z + h) ¡ F (z) X1 Xn¡2 n ¡ 2 j ¡ f(z)j · jhj n(n ¡ 1)ja j( jhjjjzjn¡2¡j) h n j n=0 j=0 X1 n¡2 = jhj n(n ¡ 1)janj(jzj + jhj) : n=0 P1 n¡2 We already know that the series n=0 n(n ¡ 1)janjjzj converges for jzj < R: Now, for jzj < R and h ! 0 we have jzj + jhj < R eventually.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Sequences, Series and Taylor Approximation (Ma2712b, MA2730)
    Sequences, Series and Taylor Approximation (MA2712b, MA2730) Level 2 Teaching Team Current curator: Simon Shaw November 20, 2015 Contents 0 Introduction, Overview 6 1 Taylor Polynomials 10 1.1 Lecture 1: Taylor Polynomials, Definition . .. 10 1.1.1 Reminder from Level 1 about Differentiable Functions . .. 11 1.1.2 Definition of Taylor Polynomials . 11 1.2 Lectures 2 and 3: Taylor Polynomials, Examples . ... 13 x 1.2.1 Example: Compute and plot Tnf for f(x) = e ............ 13 1.2.2 Example: Find the Maclaurin polynomials of f(x) = sin x ...... 14 2 1.2.3 Find the Maclaurin polynomial T11f for f(x) = sin(x ) ....... 15 1.2.4 QuestionsforChapter6: ErrorEstimates . 15 1.3 Lecture 4 and 5: Calculus of Taylor Polynomials . .. 17 1.3.1 GeneralResults............................... 17 1.4 Lecture 6: Various Applications of Taylor Polynomials . ... 22 1.4.1 RelativeExtrema .............................. 22 1.4.2 Limits .................................... 24 1.4.3 How to Calculate Complicated Taylor Polynomials? . 26 1.5 ExerciseSheet1................................... 29 1.5.1 ExerciseSheet1a .............................. 29 1.5.2 FeedbackforSheet1a ........................... 33 2 Real Sequences 40 2.1 Lecture 7: Definitions, Limit of a Sequence . ... 40 2.1.1 DefinitionofaSequence .......................... 40 2.1.2 LimitofaSequence............................. 41 2.1.3 Graphic Representations of Sequences . .. 43 2.2 Lecture 8: Algebra of Limits, Special Sequences . ..... 44 2.2.1 InfiniteLimits................................ 44 1 2.2.2 AlgebraofLimits.............................. 44 2.2.3 Some Standard Convergent Sequences . .. 46 2.3 Lecture 9: Bounded and Monotone Sequences . ..... 48 2.3.1 BoundedSequences............................. 48 2.3.2 Convergent Sequences and Closed Bounded Intervals . .... 48 2.4 Lecture10:MonotoneSequences .
    [Show full text]
  • Polynomials, Taylor Series, and the Temperature of the Earth How Hot Is It ?
    GEOL 595 - Mathematical Tools in Geology Lab Assignment # 12- Nov 13, 2008 (Due Nov 19) Name: Polynomials, Taylor Series, and the Temperature of the Earth How Hot is it ? A.Linear Temperature Gradients Near the surface of the Earth, borehole drilling is used to measure the temperature as a function of depth in the Earth’s crust, much like the 3D picture you see below. These types of measurements tell us that there is a constant gradient in temperture with depth. 1. Write the form of a linear equation for temperature (T) as a function of depth (z) that depends on the temperature gradient (G). Assume the temperature at the surface is known (To). Also draw a picture of how temperture might change with depth in a borehole, and label these variables. 1 2. Measurements in boreholes tell us that the average temperature gradient increases by 20◦C for every kilometer in depth (written: 20◦C km−1). This holds pretty well for the upper 100 km on continental crust. Determine the temperature below the surface at 45 km depth if the ◦ surface temperature, (To) is 10 C. 3. Extrapolate this observation of a linear temperature gradient to determine the temperature at the base of the mantle (core-mantle boundary) at 2700 km depth and also at the center of the Earth at 6378 km depth. Draw a graph (schematically - by hand) of T versus z and label each of these layers in the Earth’s interior. 2 4. The estimated temperature at the Earth’s core is 4300◦C.
    [Show full text]
  • The Set of Continuous Functions with Everywhere Convergent Fourier Series
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 302, Number 1, July 1987 THE SET OF CONTINUOUS FUNCTIONS WITH EVERYWHERE CONVERGENT FOURIER SERIES M. AJTAI AND A. S. KECHRIS ABSTRACT. This paper deals with the descriptive set theoretic properties of the class EC of continuous functions with everywhere convergent Fourier se- ries. It is shown that this set is a complete coanalytic set in C(T). A natural coanalytic rank function on EC is studied that assigns to each / € EC a count- able ordinal number, which measures the "complexity" of the convergence of the Fourier series of /. It is shown that there exist functions in EC (in fact even differentiable ones) which have arbitrarily large countable rank, so that this provides a proper hierarchy on EC with uii distinct levels. Let G(T) be the Banach space of continuous 27r-periodic functions on the reals with the sup norm. We study in this paper descriptive set theoretic aspects of the subset EC of G(T) consisting of the continuous functions with everywhere convergent Fourier series. It is easy to verify that EC is a coanalytic set. We show in §3 that EC is actually a complete coanalytic set and therefore in particular is not Borel. This answers a question in [Ku] and provides another example of a coanalytic non-Borel set. We also discuss in §2 (see in addition the Appendix) the relations of this kind of result to the studies in the literature concerning the classification of the set of points of divergence of the Fourier series of a continuous function.
    [Show full text]
  • Calculus of Variations Raju K George, IIST
    Calculus of Variations Raju K George, IIST Lecture-1 In Calculus of Variations, we will study maximum and minimum of a certain class of functions. We first recall some maxima/minima results from the classical calculus. Maxima and Minima Let X and Y be two arbitrary sets and f : X Y be a well-defined function having domain → X and range Y . The function values f(x) become comparable if Y is IR or a subset of IR. Thus, optimization problem is valid for real valued functions. Let f : X IR be a real valued → function having X as its domain. Now x X is said to be maximum point for the function f if 0 ∈ f(x ) f(x) x X. The value f(x ) is called the maximum value of f. Similarly, x X is 0 ≥ ∀ ∈ 0 0 ∈ said to be a minimum point for the function f if f(x ) f(x) x X and in this case f(x ) is 0 ≤ ∀ ∈ 0 the minimum value of f. Sufficient condition for having maximum and minimum: Theorem (Weierstrass Theorem) Let S IR and f : S IR be a well defined function. Then f will have a maximum/minimum ⊆ → under the following sufficient conditions. 1. f : S IR is a continuous function. → 2. S IR is a bound and closed (compact) subset of IR. ⊂ Note that the above conditions are just sufficient conditions but not necessary. Example 1: Let f : [ 1, 1] IR defined by − → 1 x = 0 f(x)= − x x = 0 | | 6 1 −1 +1 −1 Obviously f(x) is not continuous at x = 0.
    [Show full text]
  • Taylor's Series of Sin X
    Taylor's Series of sin x In order to use Taylor's formula to find the power series expansion of sin x we have to compute the derivatives of sin(x): sin0(x) = cos(x) sin00(x) = − sin(x) sin000(x) = − cos(x) sin(4)(x) = sin(x): Since sin(4)(x) = sin(x), this pattern will repeat. Next we need to evaluate the function and its derivatives at 0: sin(0) = 0 sin0(0) = 1 sin00(0) = 0 sin000(0) = −1 sin(4)(0) = 0: Again, the pattern repeats. Taylor's formula now tells us that: −1 sin(x) = 0 + 1x + 0x 2 + x 3 + 0x4 + · · · 3! x3 x5 x7 = x − + − + · · · 3! 5! 7! Notice that the signs alternate and the denominators get very big; factorials grow very fast. The radius of convergence R is infinity; let's see why. The terms in this sum look like: x2n+1 x x x x = · · · · · : (2n + 1)! 1 2 3 (2n + 1) Suppose x is some fixed number. Then as n goes to infinity, the terms on the right in the product above will be very, very small numbers and there will be more and more of them as n increases. In other words, the terms in the series will get smaller as n gets bigger; that's an indication that x may be inside the radius of convergence. But this would be true for any fixed value of x, so the radius of convergence is infinity. Why do we care what the power series expansion of sin(x) is? If we use enough terms of the series we can get a good estimate of the value of sin(x) for any value of x.
    [Show full text]