Note N-Methyltyramine, a Gastrin-Releasing Factor in Beer, and Structurally Related Compounds As Agonists for Human Trace Amine-Associated Receptor 1

Total Page:16

File Type:pdf, Size:1020Kb

Note N-Methyltyramine, a Gastrin-Releasing Factor in Beer, and Structurally Related Compounds As Agonists for Human Trace Amine-Associated Receptor 1 _ Food Science and Technology Research, 26 (2), 313 317, 2020 Copyright © 2020, Japanese Society for Food Science and Technology http://www.jsfst.or.jp doi: 10.3136/fstr.26.313 Note N-Methyltyramine, a Gastrin-releasing Factor in Beer, and Structurally Related Compounds as Agonists for Human Trace Amine-associated Receptor 1 1,2* 1 1 1 3 3 Hiroto OHTA , Yuka MURAKAMI , Youhei TAKEBE , Kaori MURASAKI , Kenji OSHIMA , Hiroshi YOSHIHARA 1 and Shigeru MORIMURA 1Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Chuo-ku, Kumamoto 860- 8555, Japan 2Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda Nishi-ku, Kumamoto 860-0082, Japan 3Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto 866-8501, Japan Received September 30, 2019 ; Accepted December 5, 2019 N-Methyltyramine (N-MeTA) is known as a gastrin-releasing factor in beer. In this study, the agonistic actions of N-MeTA as well as tyramine (TA)/β-phenylethylamine (PEA) and their other N-methylated derivatives were examined to elucidate their structure-activity relationships, using a secreted placental alkaline phosphatase (SEAP)-based reporter assay in HEK-293 cells transiently expressing a G protein- coupled receptor, human trace amine-associated receptor 1 (hTAAR1). We detected the agonistic actions of six test compounds, including N-MeTA (EC50 = 6.78 µM), on hTAAR1. The agonistic actions were reduced depending on the number of N-methyl groups introduced into TA and PEA; the order of potency is PEA > N-methylphenylethylamine > TA ≈ N,N-dimethylphenylethylamine ≥ N-MeTA ≥ N,N-dimethyltyramine. Taken together with our previous study on TA/PEA as agonists for hTAAR1 in the stomach, this finding suggests that hTAAR1 might be the primary target of N-MeTA in the stomach; however, the agonistic potency of N-MeTA is weaker compared to TA and PEA. Keywords: beer, N-methyltyramine (N-MeTA), trace amine-associated receptor 1 (hTAAR1), gastrin Introduction receptor (GPCR) family (Gainetdinov et al., 2018). TA and Aromatic biogenic amines such as tyramine (TA) and PEA are abundantly present in fermented foods such as cheese, β-phenylethylamine (PEA) (Fig. 1A) are well-known trace wine, chocolate, and traditional fermented food products amines in the mammalian nervous system. These two amines consumed worldwide (Naila et al., 2010; Kim et al., 2012; modulate various neuronal functions via trace amine-associated Gainetdinov et al., 2018). These amines are also derived from receptors (TAARs), which belong to the G protein-coupled decarboxylation of L-tyrosine and L-phenylalanine during Abbreviations: TA, tyramine; PEA, β-phenylethylamine; TAARs, trace amine-associated receptors; GPCR, G protein-coupled receptor; hTAAR1, human TAAR 1; N-MeTA, N-methyltyramine; N,N-diMeTA, N,N-dimethyltyramine; N-MePEA, N-methylphenylethylamine; N,N-diMePEA, N,N-dimethylphenylethylamine; SEAP, secreted placental alkaline phosphatase; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; cAMP, cyclic AMP; CRE, cAMP response element; CL, confidence limit. *To whom correspondence should be addressed. E-mail: [email protected] 314 H. OHTA et al. Fig. 1. (A) Structures of tyramine (TA), β-phenylethylamine (PEA), and their N-methylated/N,N-dimethylated compounds, and (B) syntheses of N-methylated TA/PEA derivatives. fermentation by specific bacteria, including those belonging to Nacalai Tesque, Inc. (Kyoto, Japan). PEA hydrochloride and the genera Lactobacillus and Enterococcus (Fernández et al., N,N-diMeTA (hordenine) were obtained from Tokyo Chemical 2015; Takebe et al., 2016). We recently reported that food- Industry Co., Ltd. (Tokyo, Japan). N-MePEA was purchased derived TA and PEA are putative agonists for human TAAR 1 from Sigma-Aldrich Corp. (St. Louis, MO, USA). N,N- (hTAAR1) in the stomach, and especially in the pylorus (Ohta diMePEA hydrochloride and N-MeTA hydrochloride were et al., 2017). The pylorus contains G cells, which release synthesized from the corresponding phenethylbromides and a gastrin to stimulate gastric fluid secretion. The physiological large excess of N-methylated amines, as shown in Fig. 1B. The roles of hTAAR1 and its agonists in peripheral tissues are products were extracted with ether or chloroform, purified by gaining attention in not only the medicinal field but also the column chromatography on silica gel (7/3-chloroform/ food/nutrition field (Adriaenssens et al., 2015; Raab et al., methanol), neutralized by hydrochloric acid, and then isolated 2016; Gainetdinov et al., 2018; Batista-Lima et al., 2019). as colorless crystals. The NMR data are as follows. N,N- A related amine compound, the TA metabolite diMePEA hydrochloride: NMR δH(dimethyl sulfoxide-d6): N-methyltyramine (N-MeTA) (Fig. 1A), is found in various 10.86 (1H, NH+), 7.36-7.24 (5H, aromatic), 3.24 (2H, Ph- plants, particularly malted barley, with levels as high as 2 mg/g. CH2-), 3.03 (2H, N-CH2-), 2.78 [6H, N-(CH3)2]. N-MeTA Thus, an equivalent concentration is present in beer as well hydrochloride: NMR δH(dimethyl sulfoxide-d6): 9.31 (1H, OH), + (Stohs and Hartman, 2015) and Tsutsumi et al. (2010) reported 8.69 (2H, NH2 ), 7.05 (2H, aromatic), 6.73 (2H, aromatic), 3.06 that the N-MeTA content in beer was 2 mg/L. Administration (2H, Ph-CH2-), 2.82 (2H, N-CH2-), 2.56 (3H, N-CH3). of N-MeTA has been shown to induce increases in blood CRE-SEAP reporter assays Prior to the SEAP reporter pressure, enhancement of cardiac contraction, and inhibition of assays, HEK-293 cells were grown in Dulbecco’s modified lipolysis (Stohs and Hartman, 2015). In addition, N-MeTA is Eagle’s medium (DMEM) (Nacalai Tesque, Inc.) supplemented known as a gastrin-releasing factor in beer (Yokoo et al., 1999; with 10 % fetal bovine serum (FBS; Life Technologies, Stohs and Hartman, 2015). Considering the gastrin-releasing Carlsbad, CA, USA) at 37 ℃ and 5 % CO2. As shown in our activity of N-MeTA together with our previous work (Ohta et previous study (Ohta et al., 2017), the receptor expression al., 2017), we assumed that N-MeTA acts as an hTAAR1 vector pcDNA3-β2N9/hTAAR1 (1 μg) and the reporter vector agonist to stimulate gastrin secretion in the stomach. In this pCRE-SEAP (1 μg) (Clontech, Mountain View, CA, USA) study, the agonistic actions of N-MeTA as well as TA/PEA and were transiently co-transfected into HEK-293 cells (6 × 105 their other N-methylated derivatives [N,N-dimethyltyramine cells/35-mm diameter dish) using GeneJuice® Transfection (N,N-diMeTA), N-methylphenylethylamine (N-MePEA), and Reagent (Novagen, Gibbstown, NJ, USA). The following N,N-dimethylphenylethylamine (N,N-diMePEA)] (Fig. 1A) cyclic AMP (cAMP) response element (CRE)-SEAP reporter were examined to elucidate their structure-activity assays were performed according to the procedure described relationships, using a secreted placental alkaline phosphatase previously (Ohta et al., 2017). TA/PEA and their N-methylated _ _ (SEAP)-based reporter assay system (Ohta et al., 2012) in compounds at concentrations ranging from 10 9–10 4 M were HEK-293 cells transiently expressing hTAAR1 (Ohta et al., added to the transfected cells along with 100 μM 3-isobutyl-1- 2017). methylxanthine (IBMX; Nacalai Tesque, Inc.) in FBS-free DMEM. Dimethyl sulfoxide, used to dissolve and dilute the Materials and Methods compounds, was included in the FBS-free medium at 1 % Test compounds TA hydrochloride was purchased from concentration, without undesirable effects on SEAP activity. N-Methyltyramine and Related Compounds as hTAAR1 Agonists 315 Fig. 2. Agonist response of TA, N-MeTA, and N,N-diMeTA in (A) transiently β2N9/hTAAR1-expressing HEK-293 cells _ _ and (B) HEK-mock cells by CRE-SEAP assay. Each compound at 10 9-10 4 M was added to cells, and the cells were incubated at 37 ℃ and 5 % CO2 for 1 day. The SEAP activity at the basal level (Ba, SEAP activity with no agonist) was set as 1. HEK cells transiently transfected with the empty pcDNA3 were used as HEK-mock cells for negative control experiments. The adenylate cyclase activator forskolin was used to confirm the negative control experiment. Data represent the mean ± SE for three independent experiments, each performed in duplicate. Fig. 3. Agonist response of PEA, N-MePEA, and N,N-diMePEA in (A) transiently β2N9/hTAAR1-expressing HEK- 293 cells and (B) HEK-mock cells by CRE-SEAP assay. Cell cultures and CRE-SEAP assays were performed under identical conditions as described in Fig. 2. The basal SEAP activity (Ba) was set as 1. Data represent the mean ± SE for three independent experiments, each performed in duplicate. Results and Discussion conditions, PEA, N-MePEA, and N,N-diMePEA exhibited a According to the CRE-SEAP assays, TA, N-MeTA, and typical sigmoidal hTAAR1 agonist curve (Fig. 3A), with EC50 _ _ N,N-diMeTA at concentrations of 10 9–10 4 M showed a dose- values of 0.56 µM (95 % CL, 0.40–0.79 µM), 1.63 µM (95 % dependent increase in SEAP activity in transiently hTAAR1- CL, 1.19–2.26 µM), and 4.31 µM (95 % CL, 3.21–5.93 µM), expressing HEK-293 cells (Fig. 2A), with EC50 values of respectively. The relationship between mono/di N-methylation 4.02 µM [95 % confidence limit (CL), 2.85–6.00 µM), 6.78 µM of PEA and agonist potency for hTAAR1 was similar to that of (95 % CL, 4.85–10.31 µM), and 10.60 µM (95 % CL, 7.65– TA; and the order of potency for the three PEA-related 16.78 µM), respectively. The order of potency was TA ≥ compounds was PEA > N-MePEA > N,N-diMePEA. These N-MeTA ≥ N,N-diMeTA.
Recommended publications
  • Molecular Signatures of G-Protein-Coupled Receptors A
    REVIEW doi:10.1038/nature11896 Molecular signatures of G-protein-coupled receptors A. J. Venkatakrishnan1, Xavier Deupi2, Guillaume Lebon1,3,4,5, Christopher G. Tate1, Gebhard F. Schertler2,6 & M. Madan Babu1 G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine. ignal transduction is a fundamental biological process that is comprehensively, and in the process expand the current frontiers of required to maintain cellular homeostasis and to ensure coordi- GPCR biology. S nated cellular activity in all organisms. Membrane proteins at the In this analysis, we objectively compare known structures and reveal cell surface serve as the communication interface between the cell’s key similarities and differences among diverse GPCRs. We identify a external and internal environments. One of the largest and most diverse consensus structural scaffold of GPCRs that is constituted by a network membrane protein families is the GPCRs, which are encoded by more of non-covalent contacts between residues on the transmembrane (TM) than 800 genes in the human genome1. GPCRs function by detecting a helices.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Last Decade of Unconventional Methodologies for the Synthesis Of
    Review molecules Last Decade of Unconventional Methodologies for theReview Synthesis of Substituted Benzofurans Last Decade of Unconventional Methodologies for the Lucia Chiummiento *, Rosarita D’Orsi, Maria Funicello and Paolo Lupattelli Synthesis of Substituted Benzofurans Department of Science, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy; [email protected] (R.D.); [email protected] (M.F.); [email protected] (P.L.) Lucia Chiummiento * , Rosarita D’Orsi, Maria Funicello and Paolo Lupattelli * Correspondence: [email protected] Department of Science, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy; [email protected] (R.D.); Academic Editor: Gianfranco Favi [email protected] (M.F.); [email protected] (P.L.) Received:* Correspondence: 22 April 2020; [email protected] Accepted: 13 May 2020; Published: 16 May 2020 Abstract:Academic This Editor: review Gianfranco describes Favi the progress of the last decade on the synthesis of substituted Received: 22 April 2020; Accepted: 13 May 2020; Published: 16 May 2020 benzofurans, which are useful scaffolds for the synthesis of numerous natural products and pharmaceuticals.Abstract: This In review particular, describes new the intramolecular progress of the and last decadeintermolecular on the synthesis C–C and/or of substituted C–O bond- formingbenzofurans, processes, which with aretransition-metal useful scaffolds catalysi for thes or synthesis metal-free of numerous are summarized. natural products(1) Introduction. and (2) Ringpharmaceuticals. generation via In particular, intramolecular new intramolecular cyclization. and (2.1) intermolecular C7a–O bond C–C formation: and/or C–O (route bond-forming a). (2.2) O– C2 bondprocesses, formation: with transition-metal (route b).
    [Show full text]
  • Cathinone-Derived Psychostimulants Steven J
    Review Cite This: ACS Chem. Neurosci. XXXX, XXX, XXX−XXX pubs.acs.org/chemneuro DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants Steven J. Simmons,*,† Jonna M. Leyrer-Jackson,‡ Chicora F. Oliver,† Callum Hicks,† John W. Muschamp,† Scott M. Rawls,† and M. Foster Olive‡ † Center for Substance Abuse Research (CSAR), Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States ‡ Department of Psychology, Arizona State University, Tempe, Arizona 85281, United States ABSTRACT: Cathinone is a plant alkaloid found in khat leaves of perennial shrubs grown in East Africa. Similar to cocaine, cathinone elicits psychostimulant effects which are in part attributed to its amphetamine-like structure. Around 2010, home laboratories began altering the parent structure of cathinone to synthesize derivatives with mechanisms of action, potencies, and pharmacokinetics permitting high abuse potential and toxicity. These “synthetic cathinones” include 4-methylmethcathinone (mephedrone), 3,4-methylenedioxypyrovalerone (MDPV), and the empathogenic agent 3,4-methylenedioxymethcathinone (methylone) which collectively gained international popularity following aggressive online marketing as well as availability in various retail outlets. Case reports made clear the health risks associated with these agents and, in 2012, the Drug Enforcement Agency of the United States placed a series of synthetic cathinones on Schedule I under emergency order. Mechanistically, cathinone and synthetic derivatives work by augmenting monoamine transmission through release facilitation and/or presynaptic transport inhibition. Animal studies confirm the rewarding and reinforcing properties of synthetic cathinones by utilizing self-administration, place conditioning, and intracranial self-stimulation assays and additionally show persistent neuropathological features which demonstrate a clear need to better understand this class of drugs.
    [Show full text]
  • Effects of Acute Tyrosine/Phenylalanine Depletion on the Selective Processing of Smoking-Related Cues and the Relative Value of Cigarettes in Smokers
    Psychopharmacology DOI 10.1007/s00213-007-0995-5 ORIGINAL INVESTIGATION Effects of acute tyrosine/phenylalanine depletion on the selective processing of smoking-related cues and the relative value of cigarettes in smokers Brian Hitsman & James MacKillop & Anne Lingford-Hughes & Tim M. Williams & Faheem Ahmad & Sally Adams & David J. Nutt & Marcus R. Munafò Received: 16 May 2007 /Accepted: 18 October 2007 # Springer-Verlag 2007 Abstract tive mood, and expired carbon monoxide (CO) levels were Rationale Acute tyrosine/phenylalanine depletion (ATPD) is measured at various timepoints through 300 min. Participants a validated neurobiological challenge that results in reduced smoked at hourly intervals to prevent acute nicotine with- dopaminergic neurotransmission, allowing examination of drawal during testing. the effects of a hypodopaminergic state on craving-related Results The TYR/PHE-free mixture, as compared to the processes. BAL mixture, was associated with a greater increase in CO Objectives We studied 16 nonabstaining smokers (>10 levels from baseline ( p=0.01). Adjusting for the potential cigarettes/day; 9 males; age 20–33 years) to whom was confounding influence of between-condition differences in administered a tyrosine/phenylalanine-free mixture (TYR/ CO levels across time, TYR/PHE-free mixture was asso- PHE-free) and a balanced amino acid mixture (BAL) in a ciated with increased demand for cigarettes ( p=0.01) and double-blind, counterbalanced, crossover design. decreased attentional bias toward smoking-related words Methods Subjective cigarette craving, attentional bias to ( p=0.003). There were no significant differences between smoking-related word cues, relative value of cigarettes, nega- conditions in either subjective craving or depressed or anxious mood ( p values>0.05).
    [Show full text]
  • Learning Objectives
    2/26/2019 To help ensure the integrity of competition for Dirty Dozen: High Risk athletes, sports organizations and fans Sport Supplement worldwide. Ingredients Lara Gray, MS, RD, CSSD Senior Director of Education, Board Certified Sports Dietitian 1 Welcome! Learning Objectives Things to note: At the end of the presentation, attendees will 1. It is required by the BOC for Certified Athletic Trainers that you are actively be better able to: present in the live event AND complete the post-webinar survey in order to • Identify dietary ingredients that pose a threat to drug tested athletes. receive your CEU certificate. • Explain how high risk dietary ingredients are being used in sports 2. CEU Statements of Credit (if applicable) supplements. will be emailed to attendees no later than Friday, March 1st. • Analyze sports supplements for high risk dietary ingredients. 3. Please use the “Questions” box in GoToWebinar. Questions will be reviewed by the moderator and answered at the Drug Free Sport International (BOC AP# P8729) is approved by the Board of Certification, Inc. to end. provide continuing education to Athletic Trainers. This program is eligible for a maximum of 1 Category A hour/CEU. ATs should claim only those hours actually spent in the educational program. 4. Download today’s handouts from the “Handouts” tab. 1 2/26/2019 Today: An In-Depth Look 40% - 100% ATHLETES USE SUPPLEMENTS • Type of sport • Level of competition • Definition of supplements Garthe, Ina, and Ronald J. Maughan. "Athletes and Supplements: Prevalence and Perspectives." International journal of sport nutrition and exercise metabolism 28.2 (2018): 126‐138.
    [Show full text]
  • New Drugs in Europe, 2012 Europe, in Drugs New
    ISSN 1977-7841 New drugs in Europe, 2012 EMCDDA–Europol 2012 Annual Report on the implementation of Council Decision 2005/387/JHA 2012 New drugs in Europe, 2012 EMCDDA–Europol 2012 Annual Report on the implementation of Council Decision 2005/387/JHA In accordance with Article 10 of Council Decision 2005/387/JHA on the information exchange, risk assessment and control of new psychoactive substances Legal notice This publication of the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) is protected by copyright. The EMCDDA accepts no responsibility or liability for any consequences arising from the use of the data contained in this document. The contents of this publication do not necessarily reflect the official opinions of the EMCDDA’s partners, the EU Member States or any institution or agency of the European Union or European Communities. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu). Europe Direct is a service to help you find answersto your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. Cataloguing data can be found at the end of this publication. Luxembourg: Publications Office of the European Union, 2013 ISBN 978-92-9168-650-6 doi:10.2810/99367 © European Monitoring Centre for Drugs and Drug Addiction, 2013 Cais do Sodré, 1249-289 Lisbon, Portugal Tel. +351 211210200 • [email protected] • www.emcdda.europa.eu © Europol, 2013 Eisenhowerlaan 73, 2517 KK, The Hague, the Netherlands Tel.
    [Show full text]
  • Decreasing Amphetamine-Induced Dopamine Release by Acute Phenylalanine/Tyrosine Depletion: a PET/ [11C]Raclopride Study in Healthy Men
    Neuropsychopharmacology (2004) 29, 427–432 & 2004 Nature Publishing Group All rights reserved 0893-133X/04 $25.00 www.neuropsychopharmacology.org Decreasing Amphetamine-Induced Dopamine Release by Acute Phenylalanine/Tyrosine Depletion: A PET/ [11C]Raclopride Study in Healthy Men 1,2, 2 2 1 3 2 Marco Leyton *, Alain Dagher , Isabelle Boileau , Kevin Casey , Glen B Baker , Mirko Diksic , Roger 2 1 1,2 Gunn , Simon N Young and Chawki Benkelfat 1 2 Department of Psychiatry, McGill University, Montre´al, Que´bec, Canada; Department of Neurology & Neurosurgery, McGill University, 3 Montre´al, Que´bec, Canada; Department of Psychiatry, Mackenzie Centre, University of Alberta, Edmonton, Alberta, Canada Acute phenylalanine/tyrosine depletion (APTD) has been proposed as a new method to decrease catecholamine neurotransmission safely, rapidly, and transiently. Validation studies in animals are encouraging, but direct evidence in human brain is lacking. In the present study, we tested the hypothesis that APTD would reduce stimulated dopamine (DA) release, as assessed by positron emission 11 tomography (PET) and changes in [ C]raclopride binding potential (BP), a measure of DA D2/D3 receptor availability. Eight healthy men 11 received two PET scans, both following d-amphetamine, 0.3 mg/kg, p.o., an oral dose known to decrease [ C]raclopride BP in ventral striatum. On the morning before each scan, subjects ingested, in counter-balanced order, an amino-acid mixture deficient in the catecholamine precursors, phenylalanine, and tyrosine, or a nutritionally balanced mixture. Brain parametric images were generated by calculating [11C]raclopride BP at each voxel. BP values were extracted from the t-map (threshold: t ¼ 4.2, equivalent to p 0.05, o Bonferroni corrected) and a priori identified regions of interest from each individual’s coregistered magnetic resonance images.
    [Show full text]
  • Application of High Resolution Mass Spectrometry for the Screening and Confirmation of Novel Psychoactive Substances Joshua Zolton Seither [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 4-25-2018 Application of High Resolution Mass Spectrometry for the Screening and Confirmation of Novel Psychoactive Substances Joshua Zolton Seither [email protected] DOI: 10.25148/etd.FIDC006565 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Chemistry Commons Recommended Citation Seither, Joshua Zolton, "Application of High Resolution Mass Spectrometry for the Screening and Confirmation of Novel Psychoactive Substances" (2018). FIU Electronic Theses and Dissertations. 3823. https://digitalcommons.fiu.edu/etd/3823 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida APPLICATION OF HIGH RESOLUTION MASS SPECTROMETRY FOR THE SCREENING AND CONFIRMATION OF NOVEL PSYCHOACTIVE SUBSTANCES A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY by Joshua Zolton Seither 2018 To: Dean Michael R. Heithaus College of Arts, Sciences and Education This dissertation, written by Joshua Zolton Seither, and entitled Application of High- Resolution Mass Spectrometry for the Screening and Confirmation of Novel Psychoactive Substances, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Piero Gardinali _______________________________________ Bruce McCord _______________________________________ DeEtta Mills _______________________________________ Stanislaw Wnuk _______________________________________ Anthony DeCaprio, Major Professor Date of Defense: April 25, 2018 The dissertation of Joshua Zolton Seither is approved.
    [Show full text]
  • Alltech® Drug Standards for the Forensic, Clinical & Pharmaceutical Industries OH
    Alltech® Drug Standards For the Forensic, Clinical & Pharmaceutical Industries OH H3C H H H3C H HO Catalog #505B Our Company Welcome to the Grace's Alltech® Drug Standards Catalog W. R. Grace has manufactured high-quality silica for over 150 years. Grace has been behind the scenes for the past 30 years supplying silica to the chromatography industry. Now we’re in the forefront moving beyond silica, developing and delivering innovative complementary products direct to the customer. Grace Davison Discovery Sciences was founded on Grace’s core strength as a premier manufacturer of differentiated media for SPE, Flash, HPLC, and Process chromatography. This core competency is further enhanced by bringing seven well-known global separations companies together, creating a powerful new single source for all your chromatography needs. A Full Portfolio of Chromatography Products to Support Drug Standards: • HPLC Columns • HPLC Accessories • Flash Products • TLC Products • GC Columns • GC Accessories • SPE and Filtration • Equipment • Syringes • Tubing • Vials For complete details, download the Chromatography Essentials catalog from the Grace web site or contact your customer service representative. Alltech - Part of the Grace Family of Products In 2004, Alltech Associates Inc. was acquired by Grace along with the Alltech® Drug Standards product line. Through investment in research and strategic acquisitions, Grace has expanded our product range and global reach while drawing upon the support of the Grace corporate infrastructure and more than 6000 employees globally to support scientific research and analysis worldwide. With key manufacturing sites in North and South America, Europe, and Asia, plus an extensive international sales and distribution network, separation scientists throughout the world can count on timely delivery and expert local technical service.
    [Show full text]
  • Bath Salt-Type Aminoketone Designer Drugs: Analytical and Synthetic Studies on Substituted Cathinones
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Bath Salt-type Aminoketone Designer Drugs: Analytical and Synthetic Studies on Substituted Cathinones Author(s): Randall Clark, Ph.D. Document No.: 250125 Date Received: July 2016 Award Number: 2013-DN-BX-K022 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this federally funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Final Summary Overview, NIJ award 2013-DN-BX-K022 Bath Salt-type Aminoketone Designer Drugs: Analytical and Synthetic Studies on Substituted Cathinones Purpose of Project: This project has focused on issues of resolution and discriminatory capabilities in controlled substance analysis providing data to increase reliability and selectivity for forensic evidence and analytical data on new analytes of the so-called bath salt-type drugs of abuse. The overall goal of these studies is to provide an analytical framework for the identification of individual substituted cathinones to the exclusion of all other possible isomeric and homologous forms of these compounds. A number of aminoketones or beta-keto/benzylketo compounds (bk-amines) have appeared on the illicit drug market in recent years including methcathinone, mephedrone, methylone and MDPV (3,4-methylenedioxypyrovalerone). These substances represent a variety of aromatic ring substituent, hydrocarbon side chain and amino group modifications of the basic cathinone/methcathinone molecular skeleton.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]