Journal of Experimental Botany Advance Access published May 21, 2014 Journal of Experimental Botany doi:10.1093/jxb/eru017 REVIEW PAPER The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon Antonio J. Monforte1,*, Aurora Diaz1, Ana Caño-Delgado2 and Esther van der Knaap3 1 Instituto de Biología Molecular y Celular de Plantas (IBMCP). Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ingeniero Fausto Elio s/n, 46022 Valencia, Spain 2 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra (Barcelona), Spain 3 Department of Horticulture and Crop Science, The Ohio State University/OARDC, 1680 Madison Avenue, Wooster, OH-44691, USA * To whom correspondence should be addressed. E-mail:
[email protected] Downloaded from Received 19 November 2013; Revised 19 November 2013; Accepted 17 December 2013 Abstract http://jxb.oxfordjournals.org/ Fruits represent an important part of the human diet and show extensive variation in size and shape between and within cultivated species. The genetic basis of such variation has been studied most extensively in tomato, where cur- rently six quantitative trait loci (QTLs) involving these traits have been fine-mapped and the genes underlying the QTLs identified. The genes responsible for the cloned QTLs belong to families with a few to many members. FASCIATED is encoded by a member of the YABBY family, CNR/FW2.2 by a member of the Cell Number Regulator family, SlKLUH/ FW3.2 by a cytochrome P450 of the 78A class (CYP78A), LOCULE NUMBER by a member of the WOX family including WUSCHEL, OVATE by a member of the Ovate Family Proteins (OFP), and SUN by a member of the IQ domain fam- at Ohio State University on May 29, 2014 ily.