KDELR3 Dnaxpab a C-Terminal Tetrapeptide Signal, Usually Lys-Asp-Glu-Leu (KDEL) in Animal Cells, and His-Asp-Glu-Leu (HDEL) in S

Total Page:16

File Type:pdf, Size:1020Kb

KDELR3 Dnaxpab a C-Terminal Tetrapeptide Signal, Usually Lys-Asp-Glu-Leu (KDEL) in Animal Cells, and His-Asp-Glu-Leu (HDEL) in S KDELR3 DNAxPab a C-terminal tetrapeptide signal, usually lys-asp-glu-leu (KDEL) in animal cells, and his-asp-glu-leu (HDEL) in S. Catalog Number: H00011015-W01P cerevisiae. This process is mediated by a receptor that recognizes, and binds the tetrapeptide-containing Regulation Status: For research use only (RUO) protein, and returns it to the ER. In yeast, the sorting receptor encoded by a single gene, ERD2, is a Product Description: Rabbit polyclonal antibody raised seven-transmembrane protein. Unlike yeast, several against a full-length human KDELR3 DNA using DNAx™ human homologs of the ERD2 gene, constituting the Immune technology. KDEL receptor gene family, have been described. KDELR3 was the third member of the family to be Immunogen: Full-length human DNA identified, and it encodes a protein highly homologous to KDELR1 and KDELR2 proteins. Two transcript variants Sequence: of KDELR3 that arise by alternative splicing, and encode MNVFRILGDLSHLLAMILLLGKIWRSKCCKGISGKSQIL different isoforms of KDELR3 receptor, have been FALVFTTRYLDLFTNFISIYNTVMKVVFLLCAYVTVYMIY described. [provided by RefSeq] GKFRKTFDSENDTFRLEFLLVPVIGLSFLENYSFTLLEIL WTFSIYLESVAILPQLFMISKTGEAETITTHYLFFLGLYR ALYLANWIRRYQTENFYDQIAVVSGVVQTIFYCDFFYL YVTKVLKGKKLSLPMPI Host: Rabbit Reactivity: Human Applications: Flow Cyt-Tr, IF-Ex, IF-Tr, WB-Tr (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Purification: Protein A Storage Buffer: In 1x PBS, pH 7.4 Storage Instruction: Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Entrez GeneID: 11015 Gene Symbol: KDELR3 Gene Alias: ERD2L3 Gene Summary: Retention of resident soluble proteins in the lumen of the endoplasmic reticulum (ER) is achieved in both yeast and animal cells by their continual retrieval from the cis-Golgi, or a pre-Golgi compartment. Sorting of these proteins is dependent on Page 1/1 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Epigenome-Wide Exploratory Study of Monozygotic Twins Suggests Differentially Methylated Regions to Associate with Hand Grip Strength
    Biogerontology (2019) 20:627–647 https://doi.org/10.1007/s10522-019-09818-1 (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength Mette Soerensen . Weilong Li . Birgit Debrabant . Marianne Nygaard . Jonas Mengel-From . Morten Frost . Kaare Christensen . Lene Christiansen . Qihua Tan Received: 15 April 2019 / Accepted: 24 June 2019 / Published online: 28 June 2019 Ó The Author(s) 2019 Abstract Hand grip strength is a measure of mus- significant CpG sites or pathways were found, how- cular strength and is used to study age-related loss of ever two of the suggestive top CpG sites were mapped physical capacity. In order to explore the biological to the COL6A1 and CACNA1B genes, known to be mechanisms that influence hand grip strength varia- related to muscular dysfunction. By investigating tion, an epigenome-wide association study (EWAS) of genomic regions using the comb-p algorithm, several hand grip strength in 672 middle-aged and elderly differentially methylated regions in regulatory monozygotic twins (age 55–90 years) was performed, domains were identified as significantly associated to using both individual and twin pair level analyses, the hand grip strength, and pathway analyses of these latter controlling the influence of genetic variation. regions revealed significant pathways related to the Moreover, as measurements of hand grip strength immune system, autoimmune disorders, including performed over 8 years were available in the elderly diabetes type 1 and viral myocarditis, as well as twins (age 73–90 at intake), a longitudinal EWAS was negative regulation of cell differentiation.
    [Show full text]
  • Uptake and Processing of the Cytolethal Distending Toxin by Mammalian Cells
    Toxins 2014, 6, 3098-3116; doi:10.3390/toxins6113098 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Uptake and Processing of the Cytolethal Distending Toxin by Mammalian Cells Joseph M. DiRienzo Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104, USA; E-Mail: [email protected]; Tel.: +1-215-898-8238; Fax: +1-215-898-8385 External Editor: Holger Barth Received: 19 September 2014; in revised form: 10 October 2014 / Accepted: 10 October 2014 / Published: 31 October 2014 Abstract: The cytolethal distending toxin (Cdt) is a heterotrimeric holotoxin produced by a diverse group of Gram-negative pathogenic bacteria. The Cdts expressed by the members of this group comprise a subclass of the AB toxin superfamily. Some AB toxins have hijacked the retrograde transport pathway, carried out by the Golgi apparatus and endoplasmic reticulum (ER), to translocate to cytosolic targets. Those toxins have been used as tools to decipher the roles of the Golgi and ER in intracellular transport and to develop medically useful delivery reagents. In comparison to the other AB toxins, the Cdt exhibits unique properties, such as translocation to the nucleus, that present specific challenges in understanding the precise molecular details of the trafficking pathway in mammalian cells. The purpose of this review is to present current information about the mechanisms of uptake and translocation of the Cdt in relation to standard concepts of endocytosis and retrograde transport. Studies of the Cdt intoxication process to date have led to the discovery of new translocation pathways and components and most likely will continue to reveal unknown features about the mechanisms by which bacterial proteins target the mammalian cell nucleus.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • Identification of Biomarkers in Macrophages of Atherosclerosis By
    Huang et al. Lipids in Health and Disease (2019) 18:107 https://doi.org/10.1186/s12944-019-1056-x RESEARCH Open Access Identification of biomarkers in macrophages of atherosclerosis by microarray analysis He-ming Huang1, Xin Jiang1, Meng-lei Hao2, Meng-jie Shan3, Yong Qiu4, Gai-feng Hu5, Quan Wang5, Zi-qing Yu6, Ling-bing Meng7*† and Yun-yun Zou8*† Abstract Background: Atherosclerotic cardiovascular disease (ASCVD) refers to a series of diseases caused by atherosclerosis (AS). It is one of the most important causes of death worldwide. According to the inflammatory response theory, macrophages play a critical role in AS. However, the potential targets associated with macrophages in the development of AS are still obscure. This study aimed to use bioinformatics tools for screening and identifying molecular targets in AS macrophages. Methods: Two expression profiling datasets (GSE7074 and GSE9874) were obtained from the Gene Expression Omnibus dataset, and differentially expressed genes (DEGs) between non-AS macrophages and AS macrophages were identified. Functional annotation of the DEGs was performed by analyzing the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. STRING and Cytoscape were employed for constructing a protein–protein interaction network and analyzing hub genes. Results: A total of 98 DEGs were distinguished between non-AS macrophages and AS macrophages. The functional variations in DEGs were mainly enriched in response to hypoxia, respiratory gaseous exchange, protein binding, and intracellular, ciliary tip, early endosome membrane, and Lys63-specific deubiquitinase activities. Three genes were identified as hub genes, including KDELR3, CD55,andDYNC2H1. Conclusion: Hub genes and DEGs identified by using microarray techniques can be used as diagnostic and therapeutic biomarkers for AS.
    [Show full text]
  • Duplications at 19Q13.33 in Patients with Neurodevelopmental Disorders
    bioRxiv preprint doi: https://doi.org/10.1101/130377; this version posted April 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Duplications at 19q13.33 in patients with neurodevelopmental disorders. Eduardo Pérez-Palma, PhD; Elmo Saarentaus; Joris Andrieux, MD, PhD; Marie Ravoet, PhD; Giancarlo V. De Ferrari, PhD; Peter Nuernberg, PhD; Bertrand Isidor, MD, PhD; Bernd A. Neubauer, MD, ; Dennis Lal, PhD. Eduardo Pérez.Palma, Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; and the Cologne Center for Genomics, University of Cologne, Cologne, Germany. Elmo Saarentaus, Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; and the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. Joris Andrieux,Institut de Génétique Médicale Hopital Jeanne de Flandre CHRU de Lille, France. Marie Ravoet, Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium. Giancarlo V. De Ferrari, Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile. Peter Nürnberg, Cologne Center for Genomics, University of Cologne, Cologne, Germany. Bertrand Isidor, Service de Génétique Médicale, CHU Hôtel Dieu, France. Bernd A. Neubauer, Department of Neuropediatrics, University Medical Clinic Giessen, Giessen, Germany. Dennis Lal, Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; and the Cologne Center for Genomics, University of Cologne, Cologne, Germany.
    [Show full text]
  • Curriculum Vitae Kathleen A. Trychta Program in Toxicology University Of
    Depletion of endoplasmic reticulum calcium triggers the loss of ER resident proteins Item Type dissertation Authors Trychta, Kathleen Anne Publication Date 2019 Abstract The endoplasmic reticulum (ER) contains proteins that carry out the diverse functions of the ER including calcium storage, protein folding, modification, and trafficking, lipid metabolism, and drug detoxification. When soluble ER resident proteins wi... Keywords Cellular biology; Molecular biology; Neurosciences; ER retention sequence; KDEL receptor; oxygen-glucose deprivation; Calcium; Endoplasmic Reticulum; Ischemia Download date 10/10/2021 05:06:38 Link to Item http://hdl.handle.net/10713/11613 Curriculum Vitae Kathleen A. Trychta Program in Toxicology University of Maryland, Baltimore Date: July 2019 Contact Information: [email protected] EDUCATION University of Maryland, Baltimore, MD August 2016-Present • Graduate Program • Molecular and Mechanistic Toxicology Colgate University, Hamilton, NY May 2013 • Bachelor of Arts (with honors) • Major: Cellular Neuroscience • Minor: Biology RESEARCH EXPERIENCE National Institutes of Health, Baltimore, MD August 2016-Present National Institute on Drug Abuse Pre-Doctoral Fellow (Dr. Brandon Harvey) • Study the departure of endoplasmic reticulum (ER) resident proteins from the ER in response to pathological conditions and propose a novel pathophysiological phenomenon defined as “ER exodosis” • Develop an assay to longitudinally monitor ER calcium depletion in vitro and in vivo using the specificity of an endogenous
    [Show full text]
  • Examining Differences of Ubiquitination on KDEL Receptor Isoform Expression Zachary Dixon Mentored by Dr
    Examining differences of ubiquitination on KDEL receptor isoform expression Zachary Dixon Mentored by Dr. Emily Wires and Dr. Brandon Harvey Introduction Materials and Methods (cont.) Results (cont.) The disruption of vital cellular processes, commonly supported by Following the identification of putative PTMs (Figure 2), KDELrs were probed Flag Pull-Down Flow-Through the transport of proteins emanant from the endoplasmic reticulum for ubiquitination. SY5Y cells were plated in a 24–well plate, and KDELr plasmids (ER), is a primary factor in disease pathogenesis. Key proteins in this were transfected into cells with no additional treatment, vehicle, or a proteasomal R1 R2 R1 R2 R1 R2 R1 R1 R1 R1 R2 R2 R2 R2 R1 transport are KDEL receptors (KDELrs). Post-translation, nascent inhibitor (MG132). Cells were then lysed and collected for immunoprecipitation R2 MANF proteins are folded by ER chaperones, a subgroup of ER-resident (IP). IP experiments were performed with magnetic beads incubated with FLAG- MANF proteins (ERPs), and moved them to the ER membrane (Trychta et antibodies, followed by PBS-T washes. Samples were centrifuged, incubated with al., 2018). They may also undergo post-translational modifications cell culture media, and eluted. Samples were then run on a 4–12% Bis-Tris gel and 51 kDa (PTMs). Post-secretion from the ER, they are trafficked through the proteins were transferred onto polyvinylidene difluoride (PVDF) membranes. For IgG Golgi, and to their final destination. However, ERPs are unique in this analysis of KDELr isoform relative abundance, PVDF membranes were probed 39 kDa regard; ERPs return from the Golgi to the ER upon interaction with a with IR secondary antibodies and scanned with an infrared scanner.
    [Show full text]
  • RNA Splicing in the Transition from B Cells
    RNA Splicing in the Transition from B Cells to Antibody-Secreting Cells: The Influences of ELL2, Small Nuclear RNA, and Endoplasmic Reticulum Stress This information is current as of September 24, 2021. Ashley M. Nelson, Nolan T. Carew, Sage M. Smith and Christine Milcarek J Immunol 2018; 201:3073-3083; Prepublished online 8 October 2018; doi: 10.4049/jimmunol.1800557 Downloaded from http://www.jimmunol.org/content/201/10/3073 Supplementary http://www.jimmunol.org/content/suppl/2018/10/05/jimmunol.180055 http://www.jimmunol.org/ Material 7.DCSupplemental References This article cites 44 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/201/10/3073.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology RNA Splicing in the Transition from B Cells to Antibody-Secreting Cells: The Influences of ELL2, Small Nuclear RNA, and Endoplasmic Reticulum Stress Ashley M.
    [Show full text]
  • ACBD3 Modulates KDEL Receptor Interaction with PKA for Its
    Yue et al. BMC Biology (2021) 19:194 https://doi.org/10.1186/s12915-021-01137-7 RESEARCH ARTICLE Open Access ACBD3 modulates KDEL receptor interaction with PKA for its trafficking via tubulovesicular carrier Xihua Yue1†, Yi Qian1†, Lianhui Zhu1, Bopil Gim2, Mengjing Bao1, Jie Jia1,3, Shuaiyang Jing1,3, Yijing Wang1,3, Chuanting Tan1,3, Francesca Bottanelli4, Pascal Ziltener5, Sunkyu Choi6, Piliang Hao1 and Intaek Lee1,7* Abstract Background: KDEL receptor helps establish cellular equilibrium in the early secretory pathway by recycling leaked ER-chaperones to the ER during secretion of newly synthesized proteins. Studies have also shown that KDEL receptor may function as a signaling protein that orchestrates membrane flux through the secretory pathway. We have recently shown that KDEL receptor is also a cell surface receptor, which undergoes highly complex itinerary between trans-Golgi network and the plasma membranes via clathrin-mediated transport carriers. Ironically, however, it is still largely unknown how KDEL receptor is distributed to the Golgi at steady state, since its initial discovery in late 1980s. Results: We used a proximity-based in vivo tagging strategy to further dissect mechanisms of KDEL receptor trafficking. Our new results reveal that ACBD3 may be a key protein that regulates KDEL receptor trafficking via modulation of Arf1-dependent tubule formation. We demonstrate that ACBD3 directly interact with KDEL receptor and form a functionally distinct protein complex in ArfGAPs-independent manner. Depletion of ACBD3 results in re- localization of KDEL receptor to the ER by inducing accelerated retrograde trafficking of KDEL receptor. Importantly, this is caused by specifically altering KDEL receptor interaction with Protein Kinase A and Arf1/ArfGAP1, eventually leading to increased Arf1-GTP-dependent tubular carrier formation at the Golgi.
    [Show full text]
  • Co-Evolution of B7H6 and Nkp30, Identification of a New B7 Family Member, B7H7, and of B7's Historical Relationship with the MHC
    Immunogenetics (2012) 64:571–590 DOI 10.1007/s00251-012-0616-2 ORIGINAL PAPER Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC Martin F. Flajnik & Tereza Tlapakova & Michael F. Criscitiello & Vladimir Krylov & Yuko Ohta Received: 19 January 2012 /Accepted: 20 March 2012 /Published online: 11 April 2012 # Springer-Verlag 2012 Abstract The B7 family of genes is essential in the regula- Furthermore, we identified a Xenopus-specific B7 homolog tion of the adaptive immune system. Most B7 family mem- (B7HXen) and revealed its close linkage to B2M, which we bers contain both variable (V)- and constant (C)-type have demonstrated previously to have been originally domains of the immunoglobulin superfamily (IgSF). encoded in the MHC. Thus, our study provides further proof Through in silico screening of the Xenopus genome and that the B7 precursor was included in the proto MHC. subsequent phylogenetic analysis, we found novel genes Additionally, the comparative analysis revealed a new B7 belonging to the B7 family, one of which is the recently family member, B7H7, which was previously designated in discovered B7H6. Humans and rats have a single B7H6 the literature as an unknown gene, HHLA2. gene; however, many B7H6 genes were detected in a single large cluster in the Xenopus genome. The B7H6 expression Keywords B7 family. MHC . Evolution . Natural killer patterns also varied in a species-specific manner. Human receptors . Genetic linkage . Xenopus B7H6 binds to the activating natural killer receptor, NKp30. While the NKp30 gene is single-copy and maps to the MHC in most vertebrates, many Xenopus NKp30 genes were Introduction found in a cluster on a separate chromosome that does not harbor the MHC.
    [Show full text]