Determining Weathering Rates of Soils in China

Total Page:16

File Type:pdf, Size:1020Kb

Determining Weathering Rates of Soils in China ______________________________________________________http://www.paper.edu.cn Geoderma 110 (2002) 205–225 www.elsevier.com/locate/geoderma Determining weathering rates of soils in China Lei Duan a,*, Jiming Hao a, Shaodong Xie b, Zhongping Zhou a, Xuemei Ye a aDepartment of Environmental Science and Engineering, Tsinghua University, Beijing 100084, PR China bCenter of Environmental Sciences, Peking University, Beijing 100871, PR China Received 10 October 2001; received in revised form 14 May 2002; accepted 12 July 2002 Abstract As an important parameter for critical load calculation and soil acidification simulation, weathering rates of soils in China were studied using different methods of calculation. The approaches used were the mass balance approach, the soil mineralogical classification, the total analysis correlation, the PROFILE model, the MAGIC model and a simulated leaching experiment. Since chemical weathering of secondary minerals usually plays a much more important role in neutralizing the long-term acidification of soils in China than that of parent material, soil mineralogy rather than parent rock/material type, which is regarded as the most suitable factor representing weathering rates in Europe, should be adopted as the basis for soil classification. The weathering rate assigned to each soil should also be corrected when the effect of temperature is considered. Due to the variation in experimental conditions, the weathering rates of soils from laboratory experiment may be difficult to compare with field determined rates, and should be adjusted by pH and percolation rate. The comparison of various methods in this study shows that the weathering rates of soils estimated by the PROFILE model coincide well with those from other independent methods such as the dynamic modeling by MAGIC and the modified leaching experiment. The weathering rates were very low (usually lower than 1.0 kEqÁha À 1Áyear À 1) for Allites (including Latosol, Lateritic Red Earth, Red Earth, Yellow Earth and Yellow-Brown Earth) in south China and Silalsols (consisting of Dark Brown Forest Soil, Black Soil and Podzolic Soil) in northeast China, and very high for Alpine Soils, Desert Soils and Pedocals in west China. The content of weatherable minerals in soil is the most important factor in determining the spatial distribution of weathering rate in China, while the difference in temperature may be the reason why the weathering rate of soil in northeast China was lower than that in southeast China. D 2002 Elsevier Science B.V. All rights reserved. Keywords: Weathering rate; Critical load; Soil acidification; China * Corresponding author. Tel.: +86-10-62782030; fax: +86-10-62773650. E-mail address: [email protected] (L. Duan). 0016-7061/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved. PII: S0016-7061(02)00231-8 中国科技论文在线______________________________________________________http://www.paper.edu.cn ______________________________________________________http://www.paper.edu.cn 206 L. Duan et al. / Geoderma 110 (2002) 205–225 1. Introduction The supply of base cations from chemical weathering of soil minerals is an important geochemical process determining the long-term availability of plant nutrients and the chemical status of soils. In particular, the weathering of soil provides the major long-term source of alkalinity and, thus, determines the susceptibility of a soil to acidification. If the rate of weathering cannot compensate for the depletion of base cations by biomass uptake and drainage, it is inevitable that acidification occurs (Langan et al., 1996; Sverdrup and Warfvinge, 1988; White and Brantley, 1995). The role of SO2 and NOx emissions (the precursors of acid deposition) in enhancing the rate of soil and freshwater acidification is widely recognized. Critical load, which is defined as the highest deposition of acidifying compounds that will not cause long-term harmful effect to the ecosystem (Nilsson and Grennfelt, 1988), has come into wide use for planning emission abatement of sulphur and nitrogen compounds. For example, the second Sulphur Protocol signed in 1994 by the member countries in Europe prescribed that a reduction of the excess of sulphur deposition over critical loads by 60% (‘‘60% gap closure,’’ 1990 as basic year) should be fulfilled before 2000 (Hettelingh et al., 1995). The Chinese govern- ment has also adopted critical load as a guide to formulating strategies of acid deposition control. In 1998, the Acid Rain Control Zone and Sulphur Dioxide Pollution Control Zone (called the two Control Zones for short) were designated in China for those areas which are, or could become, affected by acid deposition or ambient sulphur dioxide concentrations (Hao et al., 1998). Critical loads derived through a semiquantitative method (Duan et al., 2000) and critical load exceedances were adopted as the most important scientific basis for designation. Critical loads updated by the Steady State Mass Balance (SSMB) method (Duan et al., 2001) should also be applied in formulating national/regional acid deposition control strategies in China (Hao et al., 2001). Central to critical load calculation is the determination of the weathering rates of soils. Different measuring methods have been used, which ranges from field based studies, such as the watershed budget studies (Paces, 1983, 1986; Velbel, 1985; Drever and Clow, 1995) and the use of chronosequences (Bain et al., 1993), to laboratory studies involving Sr isotopic ratios (A˚ berg et al., 1989) or long-term leaching experiments (Hodson and Langan, 1999; Zulla and Billett, 1994). Many acidification models such as PROFILE (Warfvinge and Sverdrup, 1992) and MAGIC (Cosby et al., 1985) may also be applied to calculate weathering rate both for soils and cachments (Langan et al., 1995, 1996).To provide the necessary input data for critical load calculation and acidification simulation, weathering rates of soils in China were studied in 1990s. For instance, long-term leaching experiments (Liao et al., 1997; Liu et al., 1999; Qiu and Yang, 1998; Rong et al., 1997; Wu et al., 1998) and PROFILE model (Larssen et al., 2000; Xie et al., 1995, 1997; Zhao et al., 1995) was applied in determining weathering rates of soils in south and southwest China. However, these studies were confined to several soils and a few areas heavily polluted by acid deposition and cannot meet the requirement of critical load mapping for the whole country. Further studies on weathering rate are needed. Moreover, since the methods mentioned above were developed for European ecosystems, uncertainty may occur when they are applied in China, where the characteristics of soils are quite different. The object of this paper is to compare the weathering rates for spatially extensive and acid 中国科技论文在线______________________________________________________http://www.paper.edu.cn L. Duan et al. / Geoderma 110 (2002) 205–225 207 sensitive soils estimated through different methods, and to test the applicability of these methods in China. 2. Methods and materials The methods used to calculate weathering rate of soil in this study are briefly described below. 2.1. Mass balance approach The supply of base cations from chemical weathering of selected soil horizons can be calculated by comparing the chemical composition of each soil horizon with that of the C horizon, which is assumed to represent the unweathered parent material (Bain et al., 1993; White, 1995). It is considered that titanium (Ti), zirconium (Zr) or quartz is stable and immobile through the pedogenlic process and, therefore, provides a reference against which the loss of base cations can be measured (White, 1995). The amount of base cations lost divided by the age of the soil profile produces the historical weathering rate, i.e., the long-term average of weathering rate in the past: X qSz 1 xS;R RW ¼ xP;i À xS;i ; i ¼ Ca; Mg; K; Na ð1Þ Dt i Mi xP;R where xS,R is the fraction of reference component in soil, xP,R is the fraction of reference component in parent material, xS,i is the fraction of element i in soil, xP,i is the fraction of element i in parent material, Mi is the equivalent mass of element i, qS is the bulk density of soil, z is the soil depth and Dt is the soil age. For this study, Ti was used as the conservative element because of its relatively high content in the soil samples. The soils were assumed with large uncertainty to be formed during the last period of glaciation, which ended 12,000 years ago. 2.2. Soil classification At a workshop on critical loads held at Skokloster, Sweden, in 1988, five critical load (assumed to be equal to the weathering rate) classes for forest soils were proposed based on the dominant mineralogy of the soils’ parent materials (as shown in Table 1; Nilsson and Grennfelt, 1988). Soils in Class 1 (with lowest weathering rates) are derived from highly siliceous parent rocks such as quartzite and K-feldspar-rich granite, and soils in Class 5 (with the highest weathering rates) are from parent materials with free carbonates (Marls, limestone and lime-rich proluviun, sediment and aeolian deposit, etc.). Between these extremes are soils derived from plagioclase-rich granite, gneiss, etc. (Class 2), granodiorite, schist, etc. (Class 3), and gabbro and basalt, etc. (Class 4). As compared with soil mineralogy, parent rock/material, the geological origin of Skokloster mineral classes, is less suitable for assessing weathering rates of soils in China, although it is regarded as the most suitable variable representing
Recommended publications
  • Fiji)Iji) Uusingsing Tthehe UUSLESLE Mmodelodel Andand a GISGIS
    COMPONENT 1A - Project 1A4 Integrated Coastal Management - GERSA Project Spatial Approach - Remote Sensing September 2008 TECHNICAL REPORT MMappingapping PotentialPotential EErosionrosion RRisksisks iinn NNorthorth VVitiiti LLevuevu (FFiji)iji) uusingsing tthehe UUSLESLE MModelodel andand a GISGIS AAuthor:uthor: JJuliaulia PPRINTEMPSRINTEMPS Photo : Julia PRINTEMPS The CRISP programme is implemented as part of the policy developed by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c. he Initiative for the Protection and Management of Coral Reefs in the Pacifi c T (CRISP), sponsored by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project from 2002 onwards, aims to develop a vision for the future of these unique eco-systems and the communities that depend on them and to introduce strategies and projects to conserve their biodiversity, while developing the economic and environmental services that they provide both locally and globally. Also, it is designed as a factor for integration between developed countries (Australia, New Zealand, Japan and USA), French overseas territories and Pacifi c Island developing countries. The CRISP Programme comprises three major components, which are: Component 1A: Integrated Coastal Management and Watershed Management - 1A1: Marine biodiversity conservation planning - 1A2: Marine Protected Areas (MPAs) - 1A3: Institutional strengthening and networking -
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Chernozems Kastanozems Phaeozems
    Chernozems Kastanozems Phaeozems Peter Schad Soil Science Department of Ecology Technische Universität München Steppes dry, open grasslands in the mid-latitudes seasons: - humid spring and early summer - dry late summer - cold winter occurrence: - Eurasia - North America: prairies - South America: pampas Steppe soils Chernozems: mostly in steppes Kastanozems: steppes and other types of dry vegetation Phaeozems: steppes and other types of medium-dry vegetation (till 1998: Greyzems, now merged to the Phaeozems) all steppe soils: mollic horizon Definition of the mollic horizon (1) The requirements for a mollic horizon must be met after the first 20 cm are mixed, as in ploughing 1. a soil structure sufficiently strong that the horizon is not both massive and hard or very hard when dry. Very coarse prisms (prisms larger than 30 cm in diameter) are included in the meaning of massive if there is no secondary structure within the prisms; and Definition of the mollic horizon (2) 2. both broken and crushed samples have a Munsell chroma of less than 3.5 when moist, a value darker than 3.5 when moist and 5.5 when dry (shortened); and 3. an organic carbon content of 0.6% (1% organic matter) or more throughout the thickness of the mixed horizon (shortened); and Definition of the mollic horizon (3) 4. a base saturation (by 1 M NH4OAc) of 50% or more on a weighted average throughout the depth of the horizon; and Definition of the mollic horizon (4) 5. the following thickness: a. 10 cm or more if resting directly on hard rock, a petrocalcic, petroduric or petrogypsic horizon, or overlying a cryic horizon; b.
    [Show full text]
  • Kastanozems (Ks)
    KASTANOZEMS (KS) The Reference Soil Group of the Kastanozems accommodates the ‘zonal’ soils of the short grass steppe belt, south of the Eurasian tall grass steppe belt with Chernozems. Kastanozems have a similar profile as Chernozems but the humus-rich surface horizon is less deep and less black than that of the Cher- nozems and they show more prominent accumulation of secondary carbonates. The chestnut-brown colour of the surface soil is reflected in the name ‘Kastanozem’; common international synonyms are ‘(Dark) Chestnut Soils’ (Russia), (Dark) Brown Soils (Canada), and Ustolls and Borolls in the Order of the Mollisols (USDA Soil Taxonomy). Definition of Kastanozems Soils having 1 a mollic horizon with a moist chroma of more than 2 to a depth of at least 20 cm, or having this chroma directly below the depth of any plough layer, and 2 concentrations of secondary carbonates within 100 cm from the soil surface, and 3 no diagnostic horizons other than an argic, calcic, cambic, gypsic, petrocalcic, petrogypsic or vertic horizon. Common soil units: Anthric, Vertic, Petrogypsic, Gypsic, Petrocalcic, Calcic, Luvic, Hyposodic, Siltic, Chromic, Haplic. Summary description of Kastanozems Connotation: (dark) brown soils rich in organic matter; from L. castanea, chestnut, and from R. zemlja, earth, land. Parent material: a wide range of unconsolidated materials; a large part of all Kastanozems have devel- oped in loess. Environment: dry and warm; flat to undulating grasslands with ephemeral short grasses. Profile development: mostly AhBC-profiles with a brown Ah-horizon of medium depth over a brown to cinnamon cambic or argic B-horizon and with lime and/or gypsum accumulation in or below the B-horizon.
    [Show full text]
  • Soil Ecoregions in Latin America 5
    Chapter 1 Soil EcoregionsSoil Ecoregions in Latin Latin America America Boris Volkoff Martial Bernoux INTRODUCTION Large soil units generally reflect bioclimatic environments (the concept of zonal soils). Soil maps thus represent summary documents that integrate all environmental factors involved. The characteristics of soils represent the environmental factors that control the dynamics of soil organic matter (SOM) and determine both their accumulation and degradation. Soil maps thus rep- resent a basis for quantitative studies on the accumulation processes of soil organic carbon (SOC) in soils in different spatial scales. From this point of view, however, and in particular if one is interested in general scales (large semicontinental regions), soil maps have several disadvantages. First, most soil maps take into account the intrinsic factors of the soils, thus the end results of the formation processes, rather than the processes themselves. These processes are the factors that are directly related to envi- ronmental conditions, whereas the characteristics of the soils can be inher- ited (paleosols and paleoalterations) and might no longer be in equilibrium with the present environment. Second, soils seldom are homogenous spatial entities. The soil cover is in reality a juxtaposition of several distinct soils that might differ to various degrees (from similar to highly contrasted), and might be either genetically linked or entirely disconnected. This spatial heterogeneity reflects the con- ditions in which the soils were formed and is expressed differently accord- ing to the substrates and the topography. The heterogeneity also depends on the duration of evolution of soils and the geomorphologic history, either re- gional or local, as well as on climatic gradients, which are particularly obvi- ous in mountain areas.
    [Show full text]
  • Soil Mapping of Mongolia
    Soils of Mongolia Ochirbat BATKHISHIG Soil Science Society of Mongolia Soil Department, Institute Geography Mongolian Academy of Sciences [email protected] Bangkok 2015. 05.13 Topics • Mongolian Soil resources • Soil database development • Soil conservation problems Mongolia is Central Asian country, extra-continental climate conditions. Area 1 569 sq. km. Population 3.0 mln. Average elevation is 1580 meter a.s.l. Transition from Siberian taiga to Steppe and Gobi desert other Forest Cultivated 17% 8% land •January average air temperature -20o C 1% •July average air temperature +20о С Grazing Precipitation about 200 - 300 mm in year land South Gobi desert areas less than 100 mm 74% Specific of soil properties of Mongolia • High elevation of territory and sporadically distribution of permafrost. More than 80% of territory of Mongolia is higher than 1000 m above sea level • Domination of soil forming process in the minus temperature, short biological active period, 3-5 month in year • Mountain, Forest, Steppe and Desert soils presented • Slow process of chemical weathering and clay formation • Carbonate accumulation in the steppe soils • Gypsum in the Gobi desert soils • Stony soil profile and Organic accumulation layer • Paleo-cryomorphic features in the soil profile Soil geographical regions Khangai region: Steppe, Meadow and Forest soils Gobi region: Desert-steppe and Desert soils Forest-taiga soil Central Khentei mountain Kastanozem soil Kastanozem soil Gobi desert Brown soil Soil resource of Mongolia Mountain tundra Sand Peat cryomorphic
    [Show full text]
  • Soil Mapping of Mongolia
    Soil mapping of Mongolia Dr. Ochirbat BATKHISHIG Sodnomdarjaa IDERJAVHKLHAN Soil Laboratory Institute Geography Mongolian Academy of Sciences email: [email protected] Outlines • Introduction Mongolia, Environmental problems • Soil database of Mongolia • Case study Soil mapping of Kharaa river basin Central Mongolia • Soil mapping of Mongolia Mongolia is Central Asian country, extra‐continental climate conditions . Territory 1565 sq.km , Population 2.8 mln Average elevation is 1580 meter a.s.l. •Long, cold winters and short summers. •The country averages 257 cloudless sunny days a year. •Precipitation is highest in the north (average of 200 to 350 mm ) and lowest in the south 100 ‐200 mm annually. The extreme south is the Gobi, some regions of which receive no precipitation at all in most years. Land cover of Mongolia MODIS LANDSAT Environmental Problems • Climate warming in Mongolia, becoming very serious – Water recourse shortage – Permafrost melt – Desertification • Overgrazing as human impact on pasture land – Grazing land is 72.1 % of all territory • Steppe and forest ecosystems of Mongolia significantly drying last decades Climate change Last 70 years air temperature increased by 2.10 C (Ulaanbaatar) •This is 2 - 3 times more than World average World is 0.6-0.7o C Annual precipitation ranges 225.5‐269.2 mm, increased slightly by 10 mm Permafrost melting Soil properties decline Melted pingos Soil drying Wetland decline Most soil degraded in Central Mongolia, where more human impact 44,5 % or 700 thousand km2 area occupied by arid land or Gobi desert vulnerable for soil degradation Soil database of Mongolia Soil profile data Hard copy (More than 10 000 soil profile data) Digital format –Using Access, Excel Soil map data Soil maps of Mongolia , scale 1 : 1 000 000, 1 : 2 500 000, Soil map of different regions, scale 1 : 100 000, 1 : 200 000 Soil publications (mostly in Mongolian and Russian lang.) Books Articles Reports Soil map database of Mongolia Before 2000 Most soil maps on hardcopy • Bespalov N D, Soil map of Mongolia, 1951.
    [Show full text]
  • (WRB) to Describe and Classify Chernozemic Soils in Central Europe
    244 C. KABA£A, P. CHARZYÑSKI, SZABOLCS CZIGÁNY, TIBOR J. NOVÁK, MARTIN SAKSA,SOIL M.SCIENCE ŒWITONIAK ANNUAL DOI: 10.2478/ssa-2019-0022 Vol. 70 No. 3/2019: 244–257 CEZARY KABA£A1*, PRZEMYS£AW CHARZYÑSKI2, SZABOLCS CZIGÁNY3, TIBOR J. NOVÁK4, MARTIN SAKSA5, MARCIN ŒWITONIAK2 1 Wroc³aw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection ul. Grunwaldzka 53, 50-375 Wroc³aw, Poland 2 Nicolaus Copernicus University, Department of Soil Science and Landscape Management ul. Lwowska 1, 87-100, Toruñ, Poland 3 University of Pécs, Department of Physical and Environmental Geography 6 Ifjúság u., 7624 Pécs, Hungary 4 University of Debrecen, Department for Landscape Protection and Environmental Geography Egyetem tér 1, 4002 Debrecen, Hungary 5 National Agricultural and Food Centre, Soil Science and Conservation Research Institute Gagarinova 10, 82713 Bratislava, Slovakia Suitability of World Reference Base for Soil Resources (WRB) to describe and classify chernozemic soils in Central Europe Abstract: Chernozemic soils are distinguished based on the presence of thick, black or very dark, rich in humus, well-structural and base-saturated topsoil horizon, and the accumulation of secondary carbonates within soil profile. In Central Europe these soils occur in variable forms, respectively to climate gradients, position in the landscape, moisture regime, land use, and erosion/ accumulation intensity. "Typical" chernozems, correlated with Calcic or Haplic Chernozems, are similarly positioned at basic classification level in the national soil classifications in Poland, Slovakia and Hungary, and in WRB. Chernozemic soils at various stages of their transformation are placed in Chernozems, Phaeozems or Kastanozems, supplied with respective qualifiers, e.g.
    [Show full text]
  • A Global Data Set of Soil Particle Size Properties
    A Global Data Set of Soil Particle Size Properties Robert S. Webb, Cynthia E. Rosenzmig, and Elissa R. Levine SEPTEMBER 1991 NASA Technical Memorandum 4286 A Global Data Set of Soil Particle Size Properties Robert S. Webb Goddard Institute for Space Studies New York, New York Cynthia E. Rosenzweig Columbia University New York, New York Elissa R. Levine Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program 1991 A standardized global data set of soil horizon thicknesses and textures (particle size distributions) has been compiled from the FAO/UNESCO Soil Map of the World, Vols. 2-10 (1971-81). This data set will be used by the improved ground hydrology parameterization (Abramopoulos et al., 1988) designed for the GISS GCM (Goddard Institute for Space Studies General Circulation Model) Model 111. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File (Zobler, 1986), the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties. iii PWECZDjNNG PAGE BLANK MOT FILMED Introduction As land-surface parameterizations in GCMs become more sophisticated, more detailed types of soil data are needed.
    [Show full text]
  • Classification of Soil Systems on the Basis of Transfer Factors of Radionuclides from Soil to Reference Plants
    IAEA-TECDOC-1497 Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants Proceedings of a final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture and held in Chania, Crete, 22–26 September 2003 June 2006 IAEA-TECDOC-1497 Classification of soil systems on the basis of transfer factors of radionuclides from soil to reference plants Report of the final research coordination meeting organized by the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture held in Chania, Crete, 22–26 September 2003 June 2006 The originating Section of this publication in the IAEA was: Food and Environmental Protection Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria CLASSIFICATION OF SOIL SYSTEMS ON THE BASIS OF TRANSFER FACTORS OF RADIONUCLIDES FROM SOIL TO REFERENCE PLANTS IAEA, VIENNA, 2006 IAEA-TECDOC-1497 ISBN 92–0–105906–X ISSN 1011–4289 © IAEA, 2006 Printed by the IAEA in Austria June 2006 FOREWORD The IAEA Basic Safety Standards for Radiation Protection include the general requirement to keep all doses as low as reasonably achievable, taking account of economic and social considerations, within the overall constraint of individual dose limits. National and Regional authorities have to set release limits for radioactive effluent and also to establish contingency plans to deal with an uncontrolled release following an accident or terrorist activity. It is normal practice to assess radiation doses to man by means of radiological assessment models. In this context the IAEA published (1994), in cooperation with the International Union of Radioecologists (IUR), a Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments to facilitate such calculations.
    [Show full text]
  • Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic
    Article Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic Daniel Žížala 1,2,*, Tereza Zádorová 2 and Jiří Kapička 1 1 Research Institute for Soil and Water Conservation, Žabovřeská 250, Prague CZ 156 27, Czech Republic; [email protected] 2 Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 29, Prague CZ 165 00, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +42-02-5702-7232 Academic Editors: José A.M. Demattê, Clement Atzberger and Prasad S. Thenkabail Received: 28 October 2016; Accepted: 28 December 2016; Published: 1 January 2017 Abstract: The assessment of the soil redistribution and real long-term soil degradation due to erosion on agriculture land is still insufficient in spite of being essential for soil conservation policy. Imaging spectroscopy has been recognized as a suitable tool for soil erosion assessment in recent years. In our study, we bring an approach for assessment of soil degradation by erosion by means of determining soil erosion classes representing soils differently influenced by erosion impact. The adopted methods include extensive field sampling, laboratory analysis, predictive modelling of selected soil surface properties using aerial hyperspectral data and the digital elevation model and fuzzy classification. Different multivariate regression techniques (Partial Least Square, Support Vector Machine, Random forest and Artificial neural network) were applied in the predictive modelling of soil properties. The properties with satisfying performance (R2 > 0.5) were used as input data in erosion classes determination by fuzzy C-means classification method.
    [Show full text]
  • Techno Humus Systems and Global Change – Greenhouse Effect, Soil and Agriculture
    Humusica 2, article 18: Techno humus systems and global change – Greenhouse effect, soil and agriculture Augusto Zanella, Jean-François Ponge, Herbert Hager, Sandro Pignatti, John Galbraith, Oleg Chertov, Anna Andreetta, Maria de Nobili To cite this version: Augusto Zanella, Jean-François Ponge, Herbert Hager, Sandro Pignatti, John Galbraith, et al.. Humu- sica 2, article 18: Techno humus systems and global change – Greenhouse effect, soil and agriculture. Applied Soil Ecology, Elsevier, 2018, 122 (Part 2), pp.254-270. 10.1016/j.apsoil.2017.10.024. hal- 01670330 HAL Id: hal-01670330 https://hal.archives-ouvertes.fr/hal-01670330 Submitted on 21 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Public Domain 1 Humusica 2, article 18: Techno humus systems and global change – Greenhouse effect, soil and agriculture* Augusto Zanellaa,†, Jean-François Pongeb, Herbert Hagerc, Sandro Pignattid, John Galbraithe, Oleg Chertovf, Anna Andreettag, Maria De Nobilih a University of Padua, Italy b Muséum National d’Histoire Naturelle, Paris, France c University of Natural Resources and Life Sciences (BOKU), Vienna, Austria d Roma La Sapienza University, Italy e Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA f University of Applied Sciences Bingen, Germany g University of Florence, Italy h University of Udine, Italy ABSTRACT The article is structured in six sections.
    [Show full text]