Peces Pulmonados

Total Page:16

File Type:pdf, Size:1020Kb

Peces Pulmonados Osteichthyes o peces óseos Los peces más pequeños Paedocypris progenetica Schindleria brevipinguis (10.3 mm; 7.9 mm) (8.4. mm; 2 mg.) Los peces marinos más grandes Mola sp. (3 m; 2300 kg) Xiphias sp. (3-4 m; 500 kg) Thunnus sp. (3- 8 m; 900 kg) Los peces de agua dulce más grandes Siluris glanis (5m; 300 kg) Arapaima gigas (4.5 m, 200 kg) Huso huso (5 m. 2000 kg) Diversidad de ambientes de los peces óseos Abyssobrotula galatheae (8.373 m.) Triplophysa stoliczkai (5.200 m. s.n.m.) Orestias sp. (3.800 m. s.n.m.) Lucifuga (20 m.) Diversidad de ambientes de los peces óseos Cyprinodon diabolis Cyprinodon salinus (44.6° C) (+ 4 salinidad del mar) Notothenia sp. Poecilia mexicana (- 1.8° C) (H2S) El pez más largo Regalecus glesne (11 m; 272 kg) Diversidad morfológica Diversidad morfológica 1060 350-550 2850 3000 500 8000 Océanos: 70 % 58 % especies marinas + 27.000 especies Aguas dulces: 1 % 41 % especies de aguas dulces 1% especies en ambos ambientes Osteichthyes = Hueso Osteichthyes = Hueso, pero endocondral Reducción secundaria de la osificación Acipenseriformes (esturiones) Dipnoos (peces pulmonados) Caracteres de los peces óseos Patrón de huesos dérmicos en el cráneo, incluyendo los huesos maxilares y premaxilares y un opérculo óseo Patrón de huesos dérmicos de la cintura escapular y radio dérmicos o lepidotricos que sostienen la aleta Radio blando Radio espinoso Escamas dérmicas Tipos de escamas dérmicas Hueso Tejido fibroso Elasmoideas Cicloideas Ctenoideas Esmalte Hueso laminar Ganoideas Esmalte (ganoina) Dentina (cosmina) Hueso esponjoso Hueso laminar Cosmoideas Peces sin escamas Peces con placas Siluriformes (bagres) Anguiliformes (anguilas) d a) Acipenseridae (esturiones); b) Gasterosteridae (peces espinosos); c) Carangidae (jureles); d) Callichthyidae (cascarudos) Batrachoidiformes (pez sapo) Saco conectado con el tubo digestivo: pulmones o vejiga natatoria (en las formas derivadas) Pulmón Esófago Dipnoi (peces pulmonados) Polypteriformes (bichires) Saco conectado con el tubo digestivo: pulmones o vejiga natatoria (en las formas derivadas) Vejiga fisóstoma Volumen: 7 % peces de agua dulce 5 % peces marinos Vejiga fisoclista Ausente: Peces bentónicos Peces de ríos de montaña Sin soportes endoesqueléticos externos a las branquias S: septo; a: arco branquial Aleta caudal Homocerca Heterocerca Dificerca Aberturas nasales pares Válvula espiralada en grupos primitivos o ciegos pilóricos Reproducción •Ovíparos (viviparidad y fertilización interna raras: 3% de las especies ) • Anamniotas •Alta fecundidad (alta mortalidad) •Períodos de incubación cortos • Embriones no encapsulados •Con estado larval •En general, sin cuidado parental ACTINOPTERYGII (actino= radios, pteros= alas, aletas) SARCOPTERYGII (sarco= carne, pteros= alas, aletas) ACTINOPTERYGII SARCOPTERYGII cintura Aletas arquipterigias ACTINOPTERYGII SARCOPTERYGII ACTINOPTERYGII SARCOPTERYGII Los Actinopterygii Actinopterygii primitivo Aletas impares: dorsal y anal lepidotricos radios lepidotricos endoesqueléticos radios endoesqueléticos: primitivo derivado Radios espinosos (derivado) Aletas impares: caudal Heterocerca Homocerca primitivo derivado Ubicación aletas pares Abdominal (primitivo) Torácicas/ yugular (derivado) Estructura de las mandíbulas maxilar premaxilar maxilar primitivo derivado Radios branquiostegos “Mandíbulas” faríngeas DIVERSIDAD DE LOS ACTINOPTERYGII CLADISTIA o BRAQUIOPTERYGII Polypteriformes CHONDROSTEI Acipenseriformes NEOPTERYGII CLADISTIA o BRAQUIOPTERYGII Polypteriformes (n/v: bichires) CHONDROSTEI Acipenseriformes (26 especies de esturiones) Acipenser cf.baerii NEOPTERYGIII “Holósteos” Lepisosteiformes (peces lagartos) Amiiformes TELEOSTEI (96 % de los peces actuales) • Escamas elasmoideas Cicloideas Ctenoideas • Opérculo con 4 huesos • Con radios branquiostegos • Aleta caudal homocerca • Vértebras completamente osificadas • Premaxilar puede ser móvil; 3 o 4 huesos en mandíbula inferior • Puede haber dientes faríngeos • Vejiga natatoria con función hidrostática (respiración aérea) Osteoglossomorpha (220 especies) paraesfenoides (pas), basihial (bhtp) Distribución de Osteoglossomorpha Elopomorpha (800 especies) Notacanthiformes (anguilas espinosas) Saccopharyngiformes Anguilliformes (anguilas de mar, congrios) Elopiformes (tarpones) Larva leptocéfala Notacanthiformes Saccopharyngiformes Elopiformes Anguilliformes Clupeomorpha Clupeiformes (360 especies de anchoas y sardinas) Sin línea lateral Isospóndilos Distribución de los Clupeiformes Siluriformes Ostariophysi + 6500 especies 27 % de los peces óseos 93 % de las especies de Characiformes agua dulce Cypriniformes Gymnotiformes Ostariophysi Aparato de Weber Feromona del miedo Distribución de los Ostariophysi Acanthopterygii (13.500 especies) En general: Escamas ctenoideas Huesos operculares armados Posición derivada de las aletas pares Mandíbula protrusible Mandíbulas faríngeas Radios espinosos Marinos (aguas dulces) Atheriniformes Cyprinodontiformes (+ 800 especies; 15 cm.) Lebistes Xiphophorus Synbranchiformes (87 especies) Synbranchus sp. Perciformes (˜ 9200 especies; 149 familias) Pleuronectiformes (570 especies) Cara cenital Cara nadiral SARCOPTERYGII Actinistia (= Coelacanthimorpha) Dipnomorpha (= Dipnoi) Actinistia (= Coelacanthimorpha) Latimeria chalumnae (1938) Distribución geográfica de las dos formas actuales del género Latimeria Dipnomorpha = Dipnoi (dos respiraciones) Lepidosiren Protopterus Neoceratodus Nivel del agua .
Recommended publications
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate Lukas Rüber*1, Maurice Kottelat2, Heok Hui Tan3, Peter KL Ng3 and Ralf Britz1 Address: 1Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK, 2Route de la Baroche 12, Case postale 57, CH-2952 Cornol, Switzerland (permanent address) and Raffles Museum of Biodiversity Research, National University of Singapore, Kent Ridge, Singapore 119260 and 3Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260 Email: Lukas Rüber* - [email protected]; Maurice Kottelat - [email protected]; Heok Hui Tan - [email protected]; Peter KL Ng - [email protected]; Ralf Britz - [email protected] * Corresponding author Published: 13 March 2007 Received: 23 October 2006 Accepted: 13 March 2007 BMC Evolutionary Biology 2007, 7:38 doi:10.1186/1471-2148-7-38 This article is available from: http://www.biomedcentral.com/1471-2148/7/38 © 2007 Rüber et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Paedocypris, a highly developmentally truncated fish from peat swamp forests in Southeast Asia, comprises the world's smallest vertebrate. Although clearly a cyprinid fish, a hypothesis about its phylogenetic position among the subfamilies of this largest teleost family, with over 2400 species, does not exist.
    [Show full text]
  • Fish Fight Breaks out Over Tiny Catch
    Published online 31 January 2006 | Nature | doi:10.1038/news060130-4 News Fish fight breaks out over tiny catch Contenders line up to net credit for smallest vertebrate. Michael Hopkin You might be more used to arguments about who has caught the biggest fish. But this week a squabble has broken out among zoologists, each of whom is claiming to have found the smallest. And now, in attempting to settle the argument, [email protected] has stumbled upon an unlikely third contender for the small-vertebrate prize. The debate began when Ralf Britz, of London's Natural History Museum, and his colleagues announced the discovery of Paedocypris progenetica, a fish that lives in acidic peat swamps of southeast Asia. With females measuring just 7.9 millimetres long, and males just a tad bigger, the species is truly a tiddler. The researchers claimed it should be recognized as the smallest backboned animal in the world1 (see Go One small fish: Paedocypris fish!). progenetica gets lost on a fingertip. But this prompted a challenger to emerge. Ted Pietsch, of the University of “It's not just Washington in Seattle, points out that last year he described an even © Maurice Kottelat Cornol millimetres that Switzerland and Raffles count - it's how smaller fish, which he claims should be recognized as first (or perhaps last) Museum Singapore you use those in the size stakes. millimetres.” "When I saw the paper I thought 'hey!'," Pietsch recalls. He was surprised to see that the researchers made no mention of the deep-sea anglerfish Photocorynus spiniceps, males of which are just 6.2 millimetres long.
    [Show full text]
  • Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi)
    Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi). Emmanuel Pasco-Viel, Cyril Charles, Pascale Chevret, Marie Semon, Paul Tafforeau, Laurent Viriot, Vincent Laudet To cite this version: Emmanuel Pasco-Viel, Cyril Charles, Pascale Chevret, Marie Semon, Paul Tafforeau, et al.. Evolution- ary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi).. PLoS ONE, Public Library of Science, 2010, 5 (6), pp.e11293. 10.1371/journal.pone.0011293. hal-00591939 HAL Id: hal-00591939 https://hal.archives-ouvertes.fr/hal-00591939 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi) Emmanuel Pasco-Viel1, Cyril Charles3¤, Pascale Chevret2, Marie Semon2, Paul Tafforeau4, Laurent Viriot1,3*., Vincent Laudet2*. 1 Evo-devo of Vertebrate Dentition, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, INRA, Ecole Normale Supe´rieure de Lyon, Lyon, France, 2 Molecular Zoology, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, INRA, Ecole Normale Supe´rieure de Lyon, Lyon, France, 3 iPHEP, CNRS UMR 6046, Universite´ de Poitiers, Poitiers, France, 4 European Synchrotron Radiation Facility, Grenoble, France Abstract Background: The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species.
    [Show full text]
  • Ing.Org Published in Great Britain by the Royal Society, 6–9 Carlton House Terrace, London SW1Y 5AG Coturnix Coturnix Japonica Number 1665 Number
    RSPB_276_1665_Cover.qxp 4/23/09 4:39 PM Page 1 Proc. R. Soc. B | vol. 276 no. 1665 pp. 2133–2331 22 June 2009 ISSN 0962-8452 volume 276 22 June 2009 number 1665 volume 276 . number 1665 . pages 2133–2331 pages 2133–2331 Review articles Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression 2133 S. Puthiyaveetil & J. F. Allen Research articles Going to great lengths: selection for long corolla tubes in an extremely specialized bat–flower mutualism 2147 N. Muchhala & J. D. Thomson Dynamics of crowing development in the domestic Japanese quail (Coturnix coturnix japonica) 2153 S. Derégnaucourt, S. Saar & M. Gahr Emperor penguin mates: keeping together in the crowd 2163 A. Ancel, M. Beaulieu, Y. Le Maho & C. Gilbert A quantum probability explanation for violations of ‘rational’ decision theory 2171 E. M. Pothos & J. R. Busemeyer Spectacular morphological novelty in a miniature cyprinid fish, Danionella dracula n. sp. 2179 R. Britz, K. W. Conway & L. Rüber Does colour polymorphism enhance survival of prey populations? 2187 L. Wennersten & A. Forsman Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation 2195 N. Tripathi, M. Hoffmann, E.-M. Willing, C. Lanz, D. Weigel & C. Dreyer Biodiversity and body size are linked across metazoans 2209 C. R. McClain & A. G. Boyer The evolution of covert, silent infection as a parasite strategy 2217 I. Sorrell, A. White, A. B. Pedersen, R. S. Hails & M. Boots Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak 2227 W.
    [Show full text]
  • DNA Barcoding Indonesian Freshwater Fishes: Challenges and Prospects
    DNA Barcodes 2015; 3: 144–169 Review Open Access Nicolas Hubert*, Kadarusman, Arif Wibowo, Frédéric Busson, Domenico Caruso, Sri Sulandari, Nuna Nafiqoh, Laurent Pouyaud, Lukas Rüber, Jean-Christophe Avarre, Fabian Herder, Robert Hanner, Philippe Keith, Renny K. Hadiaty DNA Barcoding Indonesian freshwater fishes: challenges and prospects DOI 10.1515/dna-2015-0018 the last decades is posing serious threats to Indonesian Received December 12, 2014; accepted September 29, 2015 biodiversity. Indonesia, however, is one of the major sources of export for the international ornamental trade Abstract: With 1172 native species, the Indonesian and home of several species of high value in aquaculture. ichthyofauna is among the world’s most speciose. Despite The development of new tools for species identification that the inventory of the Indonesian ichthyofauna started is urgently needed to improve the sustainability of the during the eighteen century, the numerous species exploitation of the Indonesian ichthyofauna. With the descriptions during the last decades highlight that the aim to build comprehensive DNA barcode libraries, the taxonomic knowledge is still fragmentary. Meanwhile, co-authors have started a collective effort to DNA barcode the fast increase of anthropogenic perturbations during all Indonesian freshwater fishes. The aims of this review are: (1) to produce an overview of the ichthyological *Corresponding author: Nicolas Hubert, Institut de Recherche pour le researches conducted so far in Indonesia, (2) to present Développement (IRD), UMR226 ISE-M, Bât. 22 - CC065, Place Eugène an updated checklist of the freshwater fishes reported Bataillon, 34095 Montpellier cedex 5, France, E-mail: nicolas.hubert@ to date from Indonesia’s inland waters, (3) to highlight ird.fr the challenges associated with its conservation and Domenico Caruso, Laurent Pouyaud, Jean-Christophe Avarre, Institut de Recherche pour le Développement (IRD), UMR226 ISE-M, management, (4) to present the benefits of developing Bât.
    [Show full text]
  • DNA Barcoding Indonesian Freshwater Fishes: Challenges and Prospects
    DNA Barcodes 2015; 3: 144–169 Review Open Access Nicolas Hubert*, Kadarusman, Arif Wibowo, Frédéric Busson, Domenico Caruso, Sri Sulandari, Nuna Nafiqoh, Laurent Pouyaud, Lukas Rüber, Jean-Christophe Avarre, Fabian Herder, Robert Hanner, Philippe Keith, Renny K. Hadiaty DNA Barcoding Indonesian freshwater fishes: challenges and prospects DOI 10.1515/dna-2015-0018 the last decades is posing serious threats to Indonesian Received December 12, 2014; accepted September 29, 2015 biodiversity. Indonesia, however, is one of the major sources of export for the international ornamental trade Abstract: With 1172 native species, the Indonesian and home of several species of high value in aquaculture. ichthyofauna is among the world’s most speciose. Despite The development of new tools for species identification that the inventory of the Indonesian ichthyofauna started is urgently needed to improve the sustainability of the during the eighteen century, the numerous species exploitation of the Indonesian ichthyofauna. With the descriptions during the last decades highlight that the aim to build comprehensive DNA barcode libraries, the taxonomic knowledge is still fragmentary. Meanwhile, co-authors have started a collective effort to DNA barcode the fast increase of anthropogenic perturbations during all Indonesian freshwater fishes. The aims of this review are: (1) to produce an overview of the ichthyological *Corresponding author: Nicolas Hubert, Institut de Recherche pour le researches conducted so far in Indonesia, (2) to present Développement (IRD), UMR226 ISE-M, Bât. 22 - CC065, Place Eugène an updated checklist of the freshwater fishes reported Bataillon, 34095 Montpellier cedex 5, France, E-mail: nicolas.hubert@ to date from Indonesia’s inland waters, (3) to highlight ird.fr the challenges associated with its conservation and Domenico Caruso, Laurent Pouyaud, Jean-Christophe Avarre, Institut de Recherche pour le Développement (IRD), UMR226 ISE-M, management, (4) to present the benefits of developing Bât.
    [Show full text]
  • SAVING FRESHWATER FISHES and HABITATS Newsletter of the IUCN SSC/WI Freshwater Fish Specialist Group
    SAVING FRESHWATER FISHES AND HABITATS Newsletter of the IUCN SSC/WI Freshwater Fish Specialist Group Issue 11 • May 2016 IN THIS ISSUE: World Fish Migration Day 2016 The Great Maya Aquifer Project Conservation in Sardinia Weird and wonderful Sundaic Fish Biodiversity and Fishery Captures And Much More!!! 1 CONTENTS Editor-in-chief FFSG UPDATE Ian Harrison 3 Message from the FFSG Global Chair by Richard Sneider 5 In Memoriam: Richard P. Vari Editor: Ann Wu by Richard Sneider & Ian Harrison 6 FFSG Steering Committee gives Ted x talks Design by Ian Harrison 6 Sundaic Freshwater Fish IUCN Red List Workshop Katalin Csatadi, by Vinita Ramani Suzanne Turnock, Alex 7 FFSG at the North East Council of Aquarium Societies Mauroner, & Ann Wu by Ian Harrison 8 World Fish Migration Day, May 21, 2016 by Kerry Brink NEWS FROM AROUND THE WORLD 14 Fisheries and aquaculture research in Kazakhstan by Bakhtiyor Karimov OPINION16 FFSG Member for Central Asia, Dr. Serik Timirkhanov receives award for work on sturgeon by Bakhtiyor Karimov 18 The Great Maya Aquifer Project by Guillermo de Anda NOTICEBOARD20 Conservation of Salmo cettii and Anguilla Anguilla: different needs and perspectives in Sardinia, Italy Upcoming by Cesareevents Mario and Puzzi, conferences Daniele Tamborini and Stefania Trasforini 25 Assessing the status of a recently discovered endemism from the floodplains of the lower Front cover image: Tagus River (western Iberian Peninsula) The dorado, Salminus by Ana VerÍssimo, Hugo F. Gante, Carlos David Santos and Filipe Ribeiro 28 Fish passes developed into the context of the LIFE+ SEGURA RIVERLINK project brasiliensis, a by Francisco J.
    [Show full text]
  • Fishes of the World
    Fishes of the World Fishes of the World Fifth Edition Joseph S. Nelson Terry C. Grande Mark V. H. Wilson Cover image: Mark V. H. Wilson Cover design: Wiley This book is printed on acid-free paper. Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with the respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be createdor extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation.
    [Show full text]
  • 101 Araiocypris Batodes, a New Genus and Species of Cyprinid Fish from Northern Vietnam (Ostariophysi: Cyprinidae)
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 THE RAFFLES BULLETIN OF ZOOLOGY 2008 56(1): 101–105 Date of Publication: 29 Feb.2008 © National University of Singapore ARAIOCYPRIS BATODES, A NEW GENUS AND SPECIES OF CYPRINID FISH FROM NORTHERN VIETNAM (OSTARIOPHYSI: CYPRINIDAE) Kevin W. Conway Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63109, USA Email: [email protected] Maurice Kottelat Route de la Baroche 12, Case Postale 57, 2952 Cornol, Switzerland (permanent address); and Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Singapore 119260 Email: [email protected] ABSTRACT. – Araiocypris batodes, new genus and new species, is described from the Quang Ninh Province of northern Vietnam. Araiocypris batodes is distinguished from all other known genera and species of the Cyprinidae by the presence of a soft and flexible pre-anal fin-fold extending along the ventral body surface, from pectoral region to anus; anterior and posterior nostril openings widely separate, anterior opening at tip of a short tube. KEY WORDS. – Vietnam, Araiocypris batodes, new genus, new species, Cyprinidae, fin-fold. INTRODUCTION TAXONOMY The fish fauna of northern Vietnam is poorly studied, Araiocypris, new genus especially outside the Red River drainage (Kottelat, 2001). Recent surveys in small coastal drainages between the Red Type species. – Araiocypris batodes, new species. River and the Chinese border have revealed a number of unnamed species (Kottelat, 2004; Chen & Kottelat, 2005). Diagnosis. – A genus of cyprinid fishes differing from all We here describe a new genus and species of the family other genera of the family Cyprinidae known from Southeast Cyprinidae from the Quang Ninh Province of northern Asia by the following combination of characters: presence Vietnam.
    [Show full text]
  • Figure Captions
    Figure I (opposite) A school of Blackfin Barracuda, Sphyraena qenie (Perciformes, Sphyraenidae). Most of the 21 species of barracuda occur in schools, highlighting the observation that predatory as well as prey fishes form aggregations (Chapters 19, 20, 22). Blackfins grow to about 1 m length, display the silvery coloration typical of water column dwellers, and are frequently encountered by divers around Indo-Pacific reefs. Barracudas are fast-start predators (Chapter 8), and the pantropical Great Barracuda, S. barracuda, frequently causes ciguatera fish poisoning among humans (Chapter 25). Photo by D. Hall, www.seaphotos.com. Figure 1.1 Fish versus fishes. By convention, “fish” refers to one or more individuals of a single species. “Fishes” is used when discussing more than one species, regardless of the number of individuals involved. Megamouth, paddlefish, and char drawings courtesy of P. Vecsei; oarfish drawing courtesy of T. Roberts. Figure 2.1 Cladogram of hypothesized relationships of the Louvar (Luvarus, Luvaridae) and other Acanthuroidei. Arabic numerals show synapomorphies: numbers 1 through 60 represent characters from adults, 61 through 90 characters from juveniles. Some sample synapomorphies include: 2, branchiostegal rays reduced to four or five; 6, premaxillae and maxillae (upper jawbones) bound together; 25, vertebrae reduced to nine precaudal plus 13 caudal; 32, single postcleithrum behind the pectoral girdle; 54, spine or plate on caudal peduncle; 59, teeth spatulate. From Tyler et al. (1989). Figure 2.2 Some meristic and morphometric characters shown on a hypothetical scombrid fish. Figure II (opposite) Longhorn Cowfish, Lactoria cornuta (Tetraodontiformes: Ostraciidae), Papua New Guinea. Slow moving and seemingly awkwardly shaped, the pattern of flattened, curved, and angular trunk areas made possible by the rigid dermal covering provides remarkable lift and stability (Chapter 8).
    [Show full text]
  • 5Ec33d32278a82020051901581
    CHARACTERS AND CLASSIFICATION OF VERTEBRATE GROUPS(PISCES) Dr Poonam Kumari Asso Prof, Dept of Zoology, Maharaja College, Ara. PG SEMESTER 1{Paper 2} Fishes are essentially aquatic, jaw bearing vertebrates. They evolved during Silurian period and became the most flourishing group of aquatic vertebrates in Devonian period. Devonian period is the golden age of fishes. They are first group of vertebrates with biting jaws in the evolution of vertebrates. The earliest gnathostomes were acanthodians (climatius). Placoderms appeared shortly after acanthodians. Acanthodians gave rise to bony fishes. Placoderms gave rise to Cartilaginous fishes. Smallest fish is Paedocypris progenetica. Largest fish is Rhinodon typus GENERAL CHARACTE RS: 1. They are cold blooded Vertebrates. 2. They are aquatic live in fresh water, sea water and brackish water. 3. Body is usually streamlined, but some are elongated and snake like, while a few are flattened dorsoventrally. 4. Neck is absent as an adaptation to aquatic life. 5. There is an exoskeleton of scales, denticles or bony plates developed from mesoderm. 6. The skin glands are multicellular mucous glands. Their secretion helps in reducing the friction during locomotion. 7. They have paired and unpaired fins supported by soft or spiny rays. 8. Dorsal, anal and caudal fins are unpaired. They help in maintaining the balance of the animal. 9. Pectoral and pelvic fins are paired. They help in steering, stopping and hovering.(loc omotion) 10. The caudal fin present on the tail is helpful in propulsion. 11. All fish vertebrae are Amphicoelous 12. All viscera except kidney are enclosed by pleuoroperitoneal cavity 13. Nostrils are paired.
    [Show full text]
  • Hierarchal, Lumpers Vs. Splitters >
    250 Chapter e SENSE OF FOSSIL RECORD The Present is the Key to the Past: HUGH RANCE e3 Relatedness of organisms < hierarchal, lumpers vs. splitters > Lyell's excellent view of geology, of each formation being merely a page torn out of a history, & the geologist being obliged to fill up the gaps. —Darwin.1 The only reason we can indulge our penchant for discontinuous names at all is that we are spared sight of the extinct intermediates. —Richard Dawkins.2 Charles [Tulasne (1816-1884)] created awe-inspiring three-dimensional depictions of fungi whose information content far exceeds that of any photograph ... Freed from the search for a single flawless [part] ... the illustrator can incorporate ... impressions of multiple individual specimens into the portrait of a particular organism, without having to contend with shadows that obscure parts of the structure in a photograph. With the same mastery ... Audubon (and, more recently, [D. A.] Sibley) profiled American bird species for serious ornithologists. —Nicholas P. Money.3 The Linnaean (also spelled Linnean) hierarchal classification of organisms is artificial but it is successful because in a gross way it accords to what can be predicted by the theory of evolution and genetics as regards distance in time to common ancestors (this finding would have surprised Linnaeus who believed species to be immutable). Thus, at each higher taxonomic level one must search lower (further back) in the fossil record to find the common ancestor. For example all humanity is one species as we are demonstrably related. But are we one species with other apes and monkeys? Demonstrably no.
    [Show full text]