Download the O3b Mpower Insight Paper for Government
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commercial Space Industry Launches a New Phase
Commercial Space Industry Launches a New Phase Updated December 12, 2016 Congressional Research Service https://crsreports.congress.gov R44708 Commercial Space Industry Launches a New Phase Summary Rockets, satellites, and the services they provide, once the domain of governments, are increasingly launched and managed by privately owned companies. Although private aerospace firms have contracted with federal agencies since the onset of the Space Age six decades ago, U.S. government policy has sought to spur innovation and drive down costs by expanding the roles of satellite manufacturers and commercial launch providers. Global spending on space activity reached an estimated $323 billion in 2015. Of this amount, nearly 40% was generated by commercial space products and services and 37% by commercial infrastructure and support industries. The U.S. government—including national security agencies and the National Aeronautics and Space Administration (NASA)—accounted for about 14% of global spending; government spending by other countries was responsible for the remaining 10%. The satellite and launch vehicle supply chains are global, with a small number of manufacturers. In 2015, global satellite manufacturing revenues were $6 billion; launches booked $2.6 billion in revenue. Ground stations—the largest part of the commercial space infrastructure—generated more than $100 billion in revenue, largely from geolocation and navigation equipment. The face of the U.S. space industry is changing with a government shift toward use of fixed price contracts for commercial services, new entrants with new launch products, and an increase in the use of smaller satellites: NASA’s commercial cargo program and other federal contracts are supporting the growth of the commercial launch industry, with less expensive rockets, some of which are planned to be reusable. -
Satellite Constellations - 2021 Industry Survey and Trends
[SSC21-XII-10] Satellite Constellations - 2021 Industry Survey and Trends Erik Kulu NewSpace Index, Nanosats Database, Kepler Communications [email protected] ABSTRACT Large satellite constellations are becoming reality. Starlink has launched over 1600 spacecraft in 2 years since the launch of the first batch, Planet has launched over 450, OneWeb more than 200, and counting. Every month new constellation projects are announced, some for novel applications. First part of the paper focuses on the industry survey of 251 commercial satellite constellations. Statistical overview of applications, form factors, statuses, manufacturers, founding years is presented including early stage and cancelled projects. Large number of commercial entities have launched at least one demonstrator satellite, but operational constellations have been much slower to follow. One reason could be that funding is commonly raised in stages and the sustainability of most business models remains to be proven. Second half of the paper examines constellations by selected applications and discusses trends in appli- cations, satellite masses, orbits and manufacturers over the past 5 years. Earliest applications challenged by NewSpace were AIS, Earth Observation, Internet of Things (IoT) and Broadband Internet. Recent years have seen diversification into majority of applications that have been planned or performed by governmental or military satellites, and beyond. INTRODUCTION but they are regarded to be fleets not constellations. There were much fewer Earth Observation com- NewSpace Index has tracked commercial satellite panies in 1990s and 2000s when compared to com- constellations since 2016. There are over 251 entries munications and unclear whether any large constel- as of May 2021, which likely makes it the largest lations were planned. -
November 2020 Worldwide Satellite Magazine
Worldwide Satellite Magazine SatMagazineSatMagazine November 2020 Cover image is couresy of Spacechips. CONNECTING YOU TO THE FUTURE SMALL PACKAGE. 1.35M FIT BIG GAIN. FLEXIBLE INTEGRATED TERMINAL ARSTRAT KA-BAND CERTIFICATION COMPUTER ASSISTED SATCAP MANUAL POINTING OR AUTO-AQUISITION BUILT-IN TUNER & BEACON RECEIVER TRI-BAND X, KU AND WIDEBAND KA FEEDS WITH QUICK CHANGE RF KITS MODULAR & FLEXIBLE MODEM, BUC & LNB OPTIONS SCALABLE: 75CM, 98CM & 1.35M SET-UP BY ONE PERSON IN MINUTES LIGHTWEIGHT IATA-COMPLIANT avltech.comCHECKABLE CASES avltech.com ENABLING YOUR AMBITIONS TO REACH THEIR TARGET Ariane 6 by 2020 Vega C by 2020 Customer-tailored for versatility, reliability, competitiveness. Publishing Operations Senior Columnists This Issue’s Authors Silvano Payne, Publisher + Executive Writer Chris Forrester, Broadgate Publications Rajan Bedi Will Mudge Simon Payne, Chief Technical Officer Karl Fuchs, iDirect Government Services Matteo L. Bemposti Brian O’Toole Hartley G. Lesser, Editorial Director Bob Gough, Goonhilly Earth Station John Dahlia Dr. Anthony Penderis Pattie Lesser, Executive Editor Rebecca M. Cowen-Hirsch, Inmarsat Mark Donaghy Greg Quiggle Donald McGee, Production Manager Ken Peterman, Viasat Joakim Espeland Daniel Smith Andy Bernard, Sales Director Giles Peeters, Track24 Defence Semir Hassanaly James Trevelyan Teresa Sanderson, Operations Director Koen Willems, ST Engineering Newtec John Innes Jean-Claude Tshipama Sean Payne, Business Development Director Dan Makinster, Technical Advisor Features Advertiser Index Advantech Wireless Technologies, Inc. .7 “New Space” Leads a Path on the Ground as well as in Space: . .8 How EO + GSaaS are Driving the Dynamic Ground Segment Transformation . AvL Technologies . .2 by Greg Quiggle, Kratos Arabsat Satellite . .31 European Union to Seek Pan-European Broadand-by-Satellite System? . -
For Immediate Release
FOR IMMEDIATE RELEASE ASTRONAUTS, EXPERTS, AND SPACE AGENCIES DISCUSS ASTEROIDS, OPPORTUNITIES, AND RISKS ON ASTEROID DAY, 30 JUNE LUXEMBOURG, 22 June 2020 /PRNewswire/ -- The Asteroid Foundation returns with Asteroid Day LIVE Digital from Luxembourg. This year, the event is a fully digital celebration of asteroid science and exploration. Panel discussions and one-on-one interviews with astronauts and world experts will be broadcast on 30 June 2020. Each year Asteroid Day presents the public with a snap-shot of cutting-edge asteroid research from the largest telescopes on Earth to some of the most ambitious space missions. Topics of discussion this year include the acceleration in the rate of our asteroid discoveries and why it is set to accelerate even faster, the imminent arrival of samples from asteroid Ryugu and Bennu, the exciting preparations for the joint US-Europe mission to binary asteroid Didymos, and much more. Asteroids are the leftover remnants of the birth of the planets in the Solar System, and many are the shattered fragments of these diminutive proto-planets that never made it to maturity. “Asteroid exploration missions tell us about the birth of our own planet and reveal how asteroids can serve astronauts as stepping stones to Mars,” says Tom Jones, PhD, veteran astronaut and planetary scientist, and Asteroid Day Expert Panel member. Each asteroid is an individual with its own story to tell. And that’s what Asteroid Day is all about: bringing those stories to the widest audience possible. “Space and science have been an endless source of inspiration for SES! This is one of the reasons why we and our partners continue to do extraordinary things in space to deliver amazing experiences everywhere on earth,” says Ruy Pinto, Chief Technology Officer at SES. -
Rafael Space Propulsion
Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests. -
Highlights in Space 2010
International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no. -
Optical Satellite Communication Toward the Future of Ultra High
No.466 OCT 2017 Optical Satellite Communication toward the Future of Ultra High-speed Wireless Communications No.466 OCT 2017 National Institute of Information and Communications Technology CONTENTS FEATURE Optical Satellite Communication toward the Future of Ultra High-speed Wireless Communications 1 INTERVIEW New Possibilities Demonstrated by Micro-satellites Morio TOYOSHIMA 4 A Deep-space Optical Communication and Ranging Application Single photon detector and receiver for observation of space debris Hiroo KUNIMORI 6 Environmental-data Collection System for Satellite-to-Ground Optical Communications Verification of the site diversity effect Kenji SUZUKI 8 Optical Observation System for Satellites Using Optical Telescopes Supporting safe satellite operation and satellite communication experiment Tetsuharu FUSE 10 Development of "HICALI" Ultra-high-speed optical satellite communication between a geosynchronous satellite and the ground Toshihiro KUBO-OKA TOPICS 12 NICT Intellectual Property -Series 6- Live Electrooptic Imaging (LEI) Camera —Real-time visual comprehension of invisible electromagnetic waves— 13 Awards 13 Development of the “STARDUST” Cyber-attack Enticement Platform Cover photo Optical telescope with 1 m primary mirror. It receives data by collecting light from sat- ellites. This was the main telescope used in experiments with the Small Optical TrAn- sponder (SOTA). This optical telescope has three focal planes, a Cassegrain, a Nasmyth, and a coudé. The photo in the upper left of this page shows SOTA mounted in a 50 kg-class micro- satellite. In a world-leading effort, this was developed to conduct basic research on technology for 1.5-micron band optical communication between low-earth-orbit sat- ellite and the ground and to test satellite-mounted equipment in a space environment. -
IAC-18-B2.1.7 Page 1 of 16 a Technical Comparison of Three
A Technical Comparison of Three Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband Inigo del Portilloa,*, Bruce G. Cameronb, Edward F. Crawleyc a Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA, [email protected] b Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA, [email protected] c Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, USA, [email protected] * Corresponding Author Abstract The idea of providing Internet access from space has made a strong comeback in recent years. After a relatively quiet period following the setbacks suffered by the projects proposed in the 90’s, a new wave of proposals for large constellations of low Earth orbit (LEO) satellites to provide global broadband access emerged between 2014 and 2016. Compared to their predecessors, the main differences of these systems are: increased performance that results from the use of digital communication payloads, advanced modulation schemes, multi-beam antennas, and more sophisticated frequency reuse schemes, as well as the cost reductions from advanced manufacturing processes (such as assembly line, highly automated, and continuous testing) and reduced launch costs. This paper compares three such large LEO satellite constellations, namely SpaceX’s 4,425 satellites Ku-Ka-band system, OneWeb’s 720 satellites Ku-Ka-band system, and Telesat’s 117 satellites Ka-band system. First, we present the system architecture of each of the constellations (as described in their respective FCC filings as of September 2018), highlighting the similarities and differences amongst the three systems. -
Download English Version
O3b mPOWER Press Factsheet August 2020 O3b mPOWER As satellite plays a more prominent role in global communications, SES’s next-generation O3b mPOWER communications system builds on the proven commercial success of its current O3b Medium Earth Orbit (MEO) constellation, with breakthrough capacity, flexibility and innovations in spacecraft, ground systems, and intelligent software-driven network management, control and automation. Unlike other non-geostationary orbit satellite systems (NGSOs), the upcoming O3b mPOWER system is fully-funded, built on commercially proven technology, and based on a market-proven business case, eliminating business and operational risk for customers. Originally announced in 2017 and on target to launch in 2021, O3b mPOWER is backed by an ecosystem of technology partners and is designed for demanding applications with mobility, telecom, government and enterprise customers. Even before launch date, O3b mPOWER has achieved development and delivery milestones and has already announced major customer wins. SUCCESS OF O3b Key details include: Originally launched in 2013 to deliver • Full system: low-latency, fibre-like managed O3b mPOWER comprises an initial constellation of 11 high-throughput andlow- services, SES’s O3b was the first latency MEO satellites, extensive ground infrastructure and intelligent software and only fully NGSO broadband constellation. With a fleet of • Capacity: 20 MEO satellites, O3b supports: Terabit-level system capacity based on dynamic ability to deliver thousands ofuncontended managed -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg -
NSR White Paper Satellite Ground Network Virtualization
NSR White Paper Satellite Ground Network Virtualization March 2020 NSR- Satellite Ground Network Virtualization ABSTRACT Satellite Ground Network Infrastructure is on the cusp of a fundamental change. Largely driven by massive, recent investments in space hardware, satellite communications (SATCOM) and Sat-to- Ground (EO, TT&C) sectors have witnessed a number of technological disruptions that have the potential to drastically alter the dynamics of a matured, five-decade old industry. Small “cubesats”, software-defined payloads1, new multi-orbit and multi-band satellite architectures, advancements in electronically steered antenna technology, and other developments such as cloud-based analytics are making space an exciting, but increasingly complex and dynamic marketplace. The interworking of satcom with Earth Observation (EO) technology and telecoms, as well as use of commercial platforms for government and defense programs are also being modulated by such transformational forces. The ground infrastructure is -naturally- a key element to In general in technology, support the full potential of these investments and if you own a platform innovations in space. However, despite a constant that's valuable, you can evolutionary track record at component levels, satellite monetize it. 2 ground networks -both at the core and at the edge- lack the scale and agility necessary to avoid the palpable risk of becoming bottlenecks. Increasingly, it is not about throughput or efficiency, but about the need of a more active, collaborative, and coordinated approach by ground network stakeholders. Players must promptly embrace speed and change. Adopt open standards and best practices. Embrace technologies from the larger telecom marketplace. Combined, these are the new Eric Schmidt requirements to unleash the full potential of space-based Chairman of the U.S. -
NGSO Large Constellations SES
ITU Satellite Symposium 2019 - Bariloche NGSO Constellations - O3b, mPower PRESENTED BY PRESENTED ON Suzanne Malloy 24 septiembre 2019 SES Proprietary and Confidential | With the world’s largest multi-orbit, multi-band satellite fleet, we are building a next-generation network for our customers’ growth Unique Driver of 50+ GEO-MEO INNOVATION satellites covering constellation complemented in building a cloud-scale, by a ground segment, automated, “virtual fibre” network of together forming a flexible the future. Leading in the industry’s 99% network architecture that is most influential standards groups of the globe and world globally scalable population SES Proprietary and Confidential | Suzanne Malloy, ITU Satellite Symposium 2019 2 SES Constellations GEO wide beam Over 50 satellite constellation Reaching >350 million TV households worldwide GEO HTS Expanding HTS fleet: SES-12, SES-14, SES-15, future SES-17 Improving value proposition for data applications MEO HTS Operational since 2015, now 20 satellites High throughput, low latency 7 next-generation satellites in 2021 SES Proprietary and Confidential | Suzanne Malloy, ITU Satellite Symposium 2019 Across industries, business customers are embracing digital technologies, the cloud, IoT and big data IT spending priorities E-learning revenues in LATAM shifting to digital business, have doubled IoT, big data¹ over last 5 years² Enterprise Education Mobile banking, omni-channel 82% of mining execs will experience driving bandwidth increase digitalization growth spending over next 3