Tropical Cyclones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estimates of Tropical Cyclone Geometry Parameters Based on Best Track Data
https://doi.org/10.5194/nhess-2019-119 Preprint. Discussion started: 27 May 2019 c Author(s) 2019. CC BY 4.0 License. Estimates of tropical cyclone geometry parameters based on best track data Kees Nederhoff1, Alessio Giardino1, Maarten van Ormondt1, Deepak Vatvani1 1Deltares, Marine and Coastal Systems, Boussinesqweg 1, 2629 HV Delft, The Netherlands 5 Correspondence to: Kees Nederhoff ([email protected]) Abstract. Parametric wind profiles are commonly applied in a number of engineering applications for the generation of tropical cyclone (TC) wind and pressure fields. Nevertheless, existing formulations for computing wind fields often lack the required accuracy when the TC geometry is not known. This may affect the accuracy of the computed impacts generated by these winds. In this paper, empirical stochastic relationships are derived to describe two important parameters affecting the 10 TC geometry: radius of maximum winds (RMW) and the radius of gale force winds (∆AR35). These relationships are formulated using best track data (BTD) for all seven ocean basins (Atlantic, S/NW/NE Pacific, N/SW/SE Indian Oceans). This makes it possible to a) estimate RMW and ∆AR35 when these properties are not known and b) generate improved parametric wind fields for all oceanic basins. Validation results show how the proposed relationships allow the TC geometry to be represented with higher accuracy than when using relationships available from literature. Outer wind speeds can be 15 well reproduced by the commonly used Holland wind profile when calibrated using information either from best-track-data or from the proposed relationships. The scripts to compute the TC geometry and the outer wind speed are freely available via the following URL. -
Cruising Guide to the Philippines
Cruising Guide to the Philippines For Yachtsmen By Conant M. Webb Draft of 06/16/09 Webb - Cruising Guide to the Phillippines Page 2 INTRODUCTION The Philippines is the second largest archipelago in the world after Indonesia, with around 7,000 islands. Relatively few yachts cruise here, but there seem to be more every year. In most areas it is still rare to run across another yacht. There are pristine coral reefs, turquoise bays and snug anchorages, as well as more metropolitan delights. The Filipino people are very friendly and sometimes embarrassingly hospitable. Their culture is a unique mixture of indigenous, Spanish, Asian and American. Philippine charts are inexpensive and reasonably good. English is widely (although not universally) spoken. The cost of living is very reasonable. This book is intended to meet the particular needs of the cruising yachtsman with a boat in the 10-20 meter range. It supplements (but is not intended to replace) conventional navigational materials, a discussion of which can be found below on page 16. I have tried to make this book accurate, but responsibility for the safety of your vessel and its crew must remain yours alone. CONVENTIONS IN THIS BOOK Coordinates are given for various features to help you find them on a chart, not for uncritical use with GPS. In most cases the position is approximate, and is only given to the nearest whole minute. Where coordinates are expressed more exactly, in decimal minutes or minutes and seconds, the relevant chart is mentioned or WGS 84 is the datum used. See the References section (page 157) for specific details of the chart edition used. -
Improvement of Wind Field Hindcasts for Tropical Cyclones
Water Science and Engineering 2016, 9(1): 58e66 HOSTED BY Available online at www.sciencedirect.com Water Science and Engineering journal homepage: http://www.waterjournal.cn Improvement of wind field hindcasts for tropical cyclones Yi Pan a,b, Yong-ping Chen a,b,*, Jiang-xia Li a,b, Xue-lin Ding a,b a State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China b College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China Received 16 August 2015; accepted 10 December 2015 Available online 21 February 2016 Abstract This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP) reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data. -
Hurricane Flooding
ATM 10 Severe and Unusual Weather Prof. Richard Grotjahn L 18/19 http://canvas.ucdavis.edu Lecture 18 topics: • Hurricanes – what is a hurricane – what conditions favor their formation? – what is the internal hurricane structure? – where do they occur? – why are they important? – when are those conditions met? – what are they called? – What are their life stages? – What does the ranking mean? – What causes the damage? Time lapse of the – (Reading) Some notorious storms 2005 Hurricane Season – How to stay safe? Note the water temperature • Video clips (colors) change behind hurricanes (black tracks) (Hurricane-2005_summer_clouds-SST.mpg) Reading: Notorious Storms • Atlantic hurricanes are referred to by name. – Why? • Notorious storms have their name ‘retired’ © AFP Notorious storms: progress and setbacks • August-September 1900 Galveston, Texas: 8,000 dead, the deadliest in U.S. history. • September 1906 Hong Kong: 10,000 dead. • September 1928 South Florida: 1,836 dead. • September 1959 Central Japan: 4,466 dead. • August 1969 Hurricane Camille, Southeast U.S.: 256 dead. • November 1970 Bangladesh: 300,000 dead. • April 1991 Bangladesh: 70,000 dead. • August 1992 Hurricane Andrew, Florida and Louisiana: 24 dead, $25 billion in damage. • October/November 1998 Hurricane Mitch, Honduras: ~20,000 dead. • August 2005 Hurricane Katrina, FL, AL, MS, LA: >1800 dead, >$133 billion in damage • May 2008 Tropical Cyclone Nargis, Burma (Myanmar): >146,000 dead. Some Notorious (Atlantic) Storms Tracks • Camille • Gilbert • Mitch • Andrew • Not shown: – 2004 season (Charley, Frances, Ivan, Jeanne) – Katrina (Wilma & Rita) (2005) – Sandy (2012), Harvey (2017), Florence & Michael (2018) Hurricane Camille • 14-19 August 1969 • Category 5 at landfall – for 24 hours – peak winds 165 kts (190mph @ landfall) – winds >155kts for 18 hrs – min SLP 905 mb (26.73”) – 143 perished along gulf coast, – another 113 in Virginia Hurricane Andrew • 23-26 August 1992 • Category 5 at landfall • first Category 5 to hit US since Camille • affected S. -
Dependency of U.S. Hurricane Economic Loss on Maximum Wind Speed And
Dependency of U.S. Hurricane Economic Loss on Maximum Wind Speed and Storm Size Alice R. Zhai La Cañada High School, 4463 Oak Grove Drive, La Canada, CA 91011 Jonathan H. Jiang Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 Corresponding Email: [email protected] Abstract: Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependencies of normalized U.S. hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the U.S. from 1988 to 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation c a b with maximum wind speed (Vmax) and size (R). Assuming L=10 Vmax R , c being a scaling factor, the coefficients, a and b, generally range between 4-12 and 2-4, respectively. Both a and b tend to increase with stronger wind speed. For large losses, a weighted regression model, with a being 4.28 and b being 2.52, produces a reasonable fitting to the actual losses. Hurricane Sandy’s size was about 3.4 times of the average size of the 73 storms analyzed. -
Chapter 2.1.3, Has Both Unique and Common Features That Relate to TC Internal Structure, Motion, Forecast Difficulty, Frequency, Intensity, Energy, Intensity, Etc
Chapter Two Charles J. Neumann USNR (Retired) U, S. National Hurricane Center Science Applications International Corporation 2. A Global Tropical Cyclone Climatology 2.1 Introduction and purpose Globally, seven tropical cyclone (TC) basins, four in the Northern Hemisphere (NH) and three in the Southern Hemisphere (SH) can be identified (see Table 1.1). Collectively, these basins annually observe approximately eighty to ninety TCs with maximum winds 63 km h-1 (34 kts). On the average, over half of these TCs (56%) reach or surpass the hurricane/ typhoon/ cyclone surface wind threshold of 118 km h-1 (64 kts). Basin TC activity shows wide variation, the most active being the western North Pacific, with about 30% of the global total, while the North Indian is the least active with about 6%. (These data are based on 1-minute wind averaging. For comparable figures based on 10-minute averaging, see Table 2.6.) Table 2.1. Recommended intensity terminology for WMO groups. Some Panel Countries use somewhat different terminology (WMO 2008b). Western N. Pacific terminology used by the Joint Typhoon Warning Center (JTWC) is also shown. Over the years, many countries subject to these TC events have nurtured the development of government, military, religious and other private groups to study TC structure, to predict future motion/intensity and to mitigate TC effects. As would be expected, these mostly independent efforts have evolved into many different TC related global practices. These would include different observational and forecast procedures, TC terminology, documentation, wind measurement, formats, units of measurement, dissemination, wind/ pressure relationships, etc. Coupled with data uncertainties, these differences confound the task of preparing a global climatology. -
Calculating Tropical Cyclone Critical Wind RADII and Storm Size Using NSCAT Winds
Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1998-03 Calculating tropical cyclone critical wind RADII and storm size using NSCAT winds Magnan, Scott G. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/8044 'HUUU But 3ADU; NK fCK^943-5101 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL M0N7TOEY CA 93943-5101 MOX LIBRA ~H0OL Y CA9394^.01 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS CALCULATING TROPICAL CYCLONE CRITICAL WIND RADII AND STORM SIZE USING NSCAT WINDS by Scott G. Magnan March, 1998 Thesis Advisor: Russell L. Elsberry Thesis Co-Advisor: Lester E. Carr, HI Approved for public release; distribution is unlimited. 93943-Si MONTEREY CA REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED March, 1998. Master's Thesis 4. TTTLE AND SUBTITLE CALCULATING TROPICAL CYCLONE FUNDING NUMBERS CRITICAL WIND RADII AND STORM SIZE USING NSCAT WINDS 6. AUTHOR(S) Scott G. Magnan 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING Naval Postgraduate School ORGANIZATION Monterey CA 93943-5000 REPORT NUMBER 9. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Tropical Cyclone Mesoscale Circulation Families
DOMINANT TROPICAL CYCLONE OUTER RAINBANDS RELATED TO TORNADIC AND NON-TORNADIC MESOSCALE CIRCULATION FAMILIES Scott M. Spratt and David W. Sharp National Weather Service Melbourne, Florida 1. INTRODUCTION Doppler (WSR-88D) radar sampling of Tropical Cyclone (TC) outer rainbands over recent years has revealed a multitude of embedded mesoscale circulations (e.g. Zubrick and Belville 1993, Cammarata et al. 1996, Spratt el al. 1997, Cobb and Stuart 1998). While a majority of the observed circulations exhibited small horizontal and vertical characteristics similar to extra- tropical mini supercells (Burgess et al. 1995, Grant and Prentice 1996), some were more typical of those common to the Great Plains region (Sharp et al. 1997). During the past year, McCaul and Weisman (1998) successfully simulated the observed spectrum of TC circulations through variance of buoyancy and shear parameters. This poster will serve to document mesoscale circulation families associated with six TC's which made landfall within Florida since 1994. While tornadoes were not associated with all of the circulations (manual not algorithm defined), those which exhibited persistent and relatively strong rotation did often correlate with touchdowns (Table 1). Similarities between tornado- producing circulations will be discussed in Section 7. Contained within this document are 0.5 degree base reflectivity and storm relative velocity images from the Melbourne (KMLB; Gordon, Erin, Josephine, Georges), Jacksonville (KJAX; Allison), and Eglin Air Force Base (KEVX; Opal) WSR-88D sites. Arrows on the images indicate cells which produced persistent rotation. 2. TC GORDON (94) MESO CHARACTERISTICS KMLB radar surveillance of TC Gordon revealed two occurrences of mesoscale families (first period not shown). -
A Climatology of Tropical Cyclone Size in the Western North Pacific Using an Alternative Metric Thomas B
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 A Climatology of Tropical Cyclone Size in the Western North Pacific Using an Alternative Metric Thomas B. (Thomas Brian) McKenzie III Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES A CLIMATOLOGY OF TROPICAL CYCLONE SIZE IN THE WESTERN NORTH PACIFIC USING AN ALTERNATIVE METRIC By THOMAS B. MCKENZIE III A Thesis submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science 2017 Copyright © 2017 Thomas B. McKenzie III. All Rights Reserved. Thomas B. McKenzie III defended this thesis on March 23, 2017. The members of the supervisory committee were: Robert E. Hart Professor Directing Thesis Vasubandhu Misra Committee Member Jeffrey M. Chagnon Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii To Mom and Dad, for all that you’ve done for me. iii ACKNOWLEDGMENTS I extend my sincere appreciation to Dr. Robert E. Hart for his mentorship and guidance as my graduate advisor, as well as for initially enlisting me as his graduate student. It was a true honor working under his supervision. I would also like to thank my committee members, Dr. Vasubandhu Misra and Dr. Jeffrey L. Chagnon, for their collaboration and as representatives of the thesis process. Additionally, I thank the Civilian Institution Programs at the Air Force Institute of Technology for the opportunity to earn my Master of Science degree at Florida State University, and to the USAF’s 17th Operational Weather Squadron at Joint Base Pearl Harbor-Hickam, HI for sponsoring my graduate program and providing helpful feedback on the research. -
Maximum Wind Radius Estimated by the 50 Kt Radius: Improvement of Storm Surge Forecasting Over the Western North Pacific
Nat. Hazards Earth Syst. Sci., 16, 705–717, 2016 www.nat-hazards-earth-syst-sci.net/16/705/2016/ doi:10.5194/nhess-16-705-2016 © Author(s) 2016. CC Attribution 3.0 License. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific Hiroshi Takagi and Wenjie Wu Tokyo Institute of Technology, Graduate School of Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan Correspondence to: Hiroshi Takagi ([email protected]) Received: 8 September 2015 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 27 October 2015 Revised: 18 February 2016 – Accepted: 24 February 2016 – Published: 11 March 2016 Abstract. Even though the maximum wind radius (Rmax) countries such as Japan, China, Taiwan, the Philippines, and is an important parameter in determining the intensity and Vietnam. size of tropical cyclones, it has been overlooked in previous storm surge studies. This study reviews the existing estima- tion methods for Rmax based on central pressure or maximum wind speed. These over- or underestimate Rmax because of 1 Introduction substantial variations in the data, although an average radius can be estimated with moderate accuracy. As an alternative, The maximum wind radius (Rmax) is one of the predominant we propose an Rmax estimation method based on the radius of parameters for the estimation of storm surges and is defined the 50 kt wind (R50). Data obtained by a meteorological sta- as the distance from the storm center to the region of maxi- tion network in the Japanese archipelago during the passage mum wind speed. -
Massachusetts Tropical Cyclone Profile August 2021
Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide.