TROPICAL CYCLONE ANALYSIS USING AMSU DATA Stanley Q
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hurricane Outer Rainband Mesovortices
Presented at the 24th Conference on Hurricanes and Tropical Meteorology, Ft. Lauderdale, FL, May 31 2000 EXAMINING THE PRE-LANDFALL ENVIRONMENT OF MESOVORTICES WITHIN A HURRICANE BONNIE (1998) OUTER RAINBAND 1 2 2 1 Scott M. Spratt , Frank D. Marks , Peter P. Dodge , and David W. Sharp 1 NOAA/National Weather Service Forecast Office, Melbourne, FL 2 NOAA/AOML Hurricane Research Division, Miami, FL 1. INTRODUCTION Tropical Cyclone (TC) tornado environments have been studied for many decades through composite analyses of proximity soundings (e.g. Novlan and Gray 1974; McCaul 1986). More recently, airborne and ground-based Doppler radar investigations of TC rainband-embedded mesocyclones have advanced the understanding of tornadic cell lifecycles (Black and Marks 1991; Spratt et al. 1997). This paper will document the first known dropwindsonde deployments immediately adjacent to a family of TC outer rainband mesocyclones, and will examine the thermodynamic and wind profiles retrieved from the marine environment. A companion paper (Dodge et al. 2000) discusses dual-Doppler analyses of these mesovortices. On 26 August 1998, TC Bonnie made landfall as a category two hurricane along the North Carolina coast. Prior to landfall, two National Oceanographic and Atmospheric Administration (NOAA) Hurricane Research Division (HRD) aircraft conducted surveillance missions offshore the Carolina coast. While performing these missions near altitudes of 3.5 and 2.1 km, both aircraft were required to deviate around intense cells within a dominant outer rainband, 165 to 195 km northeast of the TC center. On-board radars detected apparent mini-supercell signatures associated with several of the convective cells along the band. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Tropical Cyclone Mesoscale Circulation Families
DOMINANT TROPICAL CYCLONE OUTER RAINBANDS RELATED TO TORNADIC AND NON-TORNADIC MESOSCALE CIRCULATION FAMILIES Scott M. Spratt and David W. Sharp National Weather Service Melbourne, Florida 1. INTRODUCTION Doppler (WSR-88D) radar sampling of Tropical Cyclone (TC) outer rainbands over recent years has revealed a multitude of embedded mesoscale circulations (e.g. Zubrick and Belville 1993, Cammarata et al. 1996, Spratt el al. 1997, Cobb and Stuart 1998). While a majority of the observed circulations exhibited small horizontal and vertical characteristics similar to extra- tropical mini supercells (Burgess et al. 1995, Grant and Prentice 1996), some were more typical of those common to the Great Plains region (Sharp et al. 1997). During the past year, McCaul and Weisman (1998) successfully simulated the observed spectrum of TC circulations through variance of buoyancy and shear parameters. This poster will serve to document mesoscale circulation families associated with six TC's which made landfall within Florida since 1994. While tornadoes were not associated with all of the circulations (manual not algorithm defined), those which exhibited persistent and relatively strong rotation did often correlate with touchdowns (Table 1). Similarities between tornado- producing circulations will be discussed in Section 7. Contained within this document are 0.5 degree base reflectivity and storm relative velocity images from the Melbourne (KMLB; Gordon, Erin, Josephine, Georges), Jacksonville (KJAX; Allison), and Eglin Air Force Base (KEVX; Opal) WSR-88D sites. Arrows on the images indicate cells which produced persistent rotation. 2. TC GORDON (94) MESO CHARACTERISTICS KMLB radar surveillance of TC Gordon revealed two occurrences of mesoscale families (first period not shown). -
Massachusetts Tropical Cyclone Profile August 2021
Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide. -
Quick Response Report #112 IMPACT of HURRICANE BONNIE
Quick Response Report #112 IMPACT OF HURRICANE BONNIE (AUGUST 1998): NORTH CAROLINA AND VIRGINIA WITH SPECIAL EMPHASIS ON ESTUARINE/MAINLAND SHORES AND A NOTE ABOUT HURRICANE GEORGES, ALABAMA David M. Bush Department of Geology State University of West Georgia Carrollton, GA 30118 Tel: 770-836-4597 Fax: 770-836-4373 E-mail: [email protected] Tracy Monegan Rice Program for the Study of Developed Shorelines (PSDS) Division of Earth & Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708 Tel: 919-681-8228 Fax: 919-684- 5833 E-mail: [email protected] Matthew Stutz Program for the Study of Developed Shorelines (PSDS) Division of Earth & Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708 Tel: 919-681-8228 Fax: 919-684- 5833 E-mail: [email protected] Andrew S. Coburn Coburn & Associates Coastal Planning Consultants PO Box 12582 Research Triangle Park, NC 27709- 2582 Tel: 919-598-8489 Fax: 919-598- 0516 E-mail: [email protected] Robert S. Young Department of Geoscience and Natural Resource Management Western Carolina University 253 Stillwell Hall Cullowhee, NC 28723 Tel: (704) 227-7503 E-mail: [email protected] 1999 Return to Hazards Center Home Page Return to Quick Response Paper Index This material is based upon work supported by the National Science Foundation under Grant No. CMS-9632458. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. IMPACT OF HURRICANE BONNIE (AUGUST 1998): NORTH CAROLINA AND VIRGINIA WITH SPECIAL EMPHASIS ON ESTUARINE/MAINLAND SHORES AND A NOTE ABOUT HURRICANE GEORGES, ALABAMA Hurricane Bonnie was a Category 3 storm that made landfall near Cape Fear/Wilmington, North Carolina on August 27, 1998. -
Notable Tropical Cyclones and Unusual Areas of Tropical Cyclone Formation
A flood is an overflow of an expanse of water that submerges land.[1] The EU Floods directive defines a flood as a temporary covering by water of land not normally covered by water.[2] In the sense of "flowing water", the word may also be applied to the inflow of the tide. Flooding may result from the volume of water within a body of water, such as a river or lake, which overflows or breaks levees, with the result that some of the water escapes its usual boundaries.[3] While the size of a lake or other body of water will vary with seasonal changes in precipitation and snow melt, it is not a significant flood unless such escapes of water endanger land areas used by man like a village, city or other inhabited area. Floods can also occur in rivers, when flow exceeds the capacity of the river channel, particularly at bends or meanders. Floods often cause damage to homes and businesses if they are placed in natural flood plains of rivers. While flood damage can be virtually eliminated by moving away from rivers and other bodies of water, since time out of mind, people have lived and worked by the water to seek sustenance and capitalize on the gains of cheap and easy travel and commerce by being near water. That humans continue to inhabit areas threatened by flood damage is evidence that the perceived value of living near the water exceeds the cost of repeated periodic flooding. The word "flood" comes from the Old English flod, a word common to Germanic languages (compare German Flut, Dutch vloed from the same root as is seen in flow, float; also compare with Latin fluctus, flumen). -
Airborne Lidar Change Detection an Overview of Earth Sciences
Earth-Science Reviews 198 (2019) 102929 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Airborne lidar change detection: An overview of Earth sciences applications T ⁎ Unal Okyaya, , Jennifer Tellinga, Craig L. Glenniea, William E. Dietrichb a National Center for Airborne Laser Mapping, Department of Civil and Environmental Engineering, University of Houston, 5000 Gulf Freeway, Building 4, Suite 216, Houston, TX 77204-5059, USA b Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA 94720-4767, USA ARTICLE INFO ABSTRACT Keywords: In the last two decades, airborne laser scanning (ALS) has found widespread application and driven fundamental Multi-temporal advances in the Earth sciences. With increasing availability and accessibility, multi-temporal ALS data have been Airborne laser scanning used to advance key research topics related to dynamic Earth surface processes. This review presents a com- ALS prehensive compilation of existing applications of ALS change detection to the Earth sciences. We cover a wide Repeat lidar scope of material pertinent to the broad field of Earth sciences to encourage the cross-pollination between sub- Change detection disciplines and discuss the outlook of ALS change detection for advancing scientific discovery. While significant progress has been made in applying repeat ALS data to change detection, numerous approaches make funda- mental assumptions that limit the full potential of repeat ALS data. The use of such data for 3D change detection is, therefore, in need of novel, scalable, and computationally efficient processing algorithms that transcend the ever-increasing data density and spatial coverage. -
Hurricanes and Tropical Storms Location and Extent of All • Severe Thunderstorms Natural Hazards That Can Affect the Jurisdiction
HAZARD I DENTIFICATION The United States and its communities are vulnerable to a wide array of natural hazards that threaten life and property. These hazards include, in no particular order: • Drought 44 CFR Requirement • Extreme Temperatures Part 201.6(c)(2)(i): The risk • Flood assessment shall include a description of the type, • Hurricanes and Tropical Storms location and extent of all • Severe Thunderstorms natural hazards that can affect the jurisdiction. The plan • Tornadoes shall include information on • Wildfire previous occurrences of hazard events and on the • Winter Storms probability of future hazard • Erosion events. • Earthquakes • Sinkholes • Landslides • Dam/Levee Failure Some of these hazards are interrelated (i.e., hurricanes can cause flooding and tornadoes), and some consist of hazardous elements that are not listed separately (i.e., severe thunderstorms can cause lightning; hurricanes can cause coastal erosion). It should also be noted that some hazards, such as severe winter storms, may impact a large area yet cause little damage, while other hazards, such as a tornado, may impact a small area yet cause extensive damage. This section of the Plan provides a general description for each of the hazards listed above along with their hazardous elements, written from a national perspective. Section 4: Page 2 H AZARD I DENTIFICATION N ORTHERN V IRGINIA R EGIONAL H AZARD M ITIGATION P LAN Drought Drought is a natural climatic condition caused by an extended period of limited rainfall beyond that which occurs naturally in a broad geographic area. High temperatures, high winds, and low humidity can worsen drought conditions, and can make areas more susceptible to wildfire. -
Lecture 14. Extratropical Cyclones • in Mid-Latitudes, Much of Our Weather
Lecture 14. Extratropical Cyclones • In mid-latitudes, much of our weather is associated with a particular kind of storm, the extratropical cyclone Cyclone: circulation around low pressure center Some midwesterners call tornadoes cyclones Tropical cyclone = hurricane • Extratropical cyclones derive their energy from horizontal temperature con- trasts. • They typically form on a boundary between a warm and a cold air mass associated with an upper tropospheric jet stream • Their circulations affect the entire troposphere over a region 1000 km or more across. • Extratropical cyclones tend to develop with a particular lifecycle . • The low pressure center moves roughly with the speed of the 500 mb wind above it. • An extratropical cyclone tends to focus the temperature contrasts into ‘fron- tal zones’ of particularly rapid horizontal temperature change. The Norwegian Cyclone Model In 1922, well before routine upper air observations began, Bjerknes and Sol- berg in Bergen, Norway, codified experience from analyzing surface weather maps over Europe into the Norwegian Cyclone Model, a conceptual picture of the evolution of an ET cyclone and associated frontal zones at ground They noted that the strongest temperature gradients usually occur at the warm edge of the frontal zone, which they called the front. They classified fronts into four types, each with its own symbol: Cold front - Cold air advancing into warm air Warm front - Warm air advancing into cold air Stationary front - Neither airmass advances Occluded front - Looks like a cold front -
Quick Response Report #128 South Carolina's Response to Hurricane Floyd Kirstin Dow Susan L
Quick Response Report #128 South Carolina's Response to Hurricane Floyd Kirstin Dow Susan L. Cutter Hazards Research Lab Department of Geography University of South Carolina Columbia, SC 29208 E-mail: [email protected] [email protected] 2000 Return to Hazards Center Home Page Return to Quick Response Paper Index This material is based upon work supported by the National Science Foundation under Grant No. CMS-9632458. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. South Carolina's Response to Hurricane Floyd ABSTRACT Ten years after Hurricane Hugo, Hurricane Floyd threatened a more densely populated South Carolina coastline. The increased coastal development, tremendous population growth, and high evacuation rates contributed to an evacuation that involved an unprecedented number of people, traffic problems, and level of public criticism. Our analysis of evacuation decision making addressed three central topics based on the Hurricane Floyd evacuation experience: residents' criteria and sources of information for evacuation decisions, factors contributing to traffic congestion, and differences in public and elected official opinions on priorities in planning and what constitutes a successful evacuation. This research involved three components: 1) a mail survey of 223 Horry County residents whom we had first surveyed following Hurricane Bonnie in 1998; 2) a phone survey of 536 residents throughout the coastal South Carolina evacuation zone; and, 3) a survey of local elected officials' perceptions of emergency planning priorities. The surveys of coastal residents documented a number of evacuation characteristics relevant to future hurricane preparedness efforts. -
Layout 1 (Page 6)
Hurricane History in North Carolina ashore. Dennis made landfall just below hurricane strength nine inches THE EXPRESS • November 29, 2017 • Page 6 at Cape Lookout on Sept. 4. The storm then moved of rain on the capitol city. Major wind damage and flood- North Carolina is especially at risk of a hurricane hitting through eastern and central North Carolina. It dumped 10 ing were reported along the North Carolina coast. Major the state. Below is a list of tropical storms and hurricanes to 15 inches of rain, causing a lot of flooding in southeastern damage was reported inland through Raleigh. Damages that have caused problems in the state in recent years. North Carolina. Because the storm had stayed off the coast topped $5 billion. Thirty-seven people died from Fran. 2011 Hurricane Irene – August 27. Hurricane Irene for many days, there was a lot of beach erosion and damage 1993 Hurricane Emily - August 31. Hurricane Emily made landfall near Cape Lookout as a Category 1. It to coastal highways. Residents of Hatteras and Ocracoke Is- came ashore as a Category 3 hurricane, but the 30-mile- brought two to four feet of storm surge along parts of the lands were stranded for many days due to damage to High- wide eye stayed just offshore of Cape Hatteras. Damage Outer Banks and up to 15 feet along parts of the Pamlico way 12. Two traffic deaths were credited to the storm. estimates were nearly $13 million. No lives were lost. Sound. Irene caused seven deaths and prompted more • Hurricane Floyd - September 16.