Thermodynamics

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamics Thermodynamics Henri J.F. Jansen Department of Physics Oregon State University December 14, 2003 II Contents 1 Basic Thermodynamics. 1 1.1 Introduction. 1 1.2 Some de¯nitions. 4 1.3 Zeroth Law of Thermodynamics. 9 1.4 First law: Energy. 9 1.5 Second law: Entropy. 13 1.6 Third law of thermodynamics. 25 1.7 Ideal gas and temperature. 26 1.8 Extra equations. 30 1.9 Problems for chapter 1 . 31 2 Thermodynamic potentials and 39 2.1 Internal energy. 39 2.2 Free energies. 45 2.3 Euler and Gibbs-Duhem relations. 49 2.4 Maxwell relations. 52 2.5 Response functions. 53 2.6 Relations between partial derivatives. 56 2.7 Conditions for equilibrium. 60 2.8 Stability requirements on other fee energies. 65 2.9 A magnetic puzzle. 67 2.10 Role of fluctuations. 71 2.11 Extra equations. 77 2.12 Problems for chapter 2 . 79 3 Phase transitions. 89 3.1 Phase diagrams. 89 3.2 Clausius-Clapeyron relation. 97 3.3 Multi-phase boundaries. 101 3.4 Binary phase diagram. 103 3.5 Van der Waals equation of state. 106 3.6 Spinodal decomposition. 116 3.7 Generalizations of the van der Waals equation. 120 3.8 Extra equations. 121 III IV CONTENTS 3.9 Problems for chapter 3 . 122 4 Landau-Ginzburg theory. 129 4.1 Introduction. 129 4.2 Order parameters. 131 4.3 Landau theory of phase transitions. 137 4.4 Case one: a second order phase transition. 139 4.5 Order of a phase transition. 144 4.6 Second case: ¯rst order transition. 145 4.7 Fluctuations and Ginzburg-Landau theory. 151 4.8 Extra equations. 158 4.9 Problems for chapter 4 . 159 5 Critical exponents. 165 5.1 Introduction. 165 5.2 Mean ¯eld theory. 170 5.3 Model free energy near a critical point. 178 5.4 Consequences of scaling. 182 5.5 Scaling of the pair correlation function. 187 5.6 Hyper-scaling. 188 5.7 Validity of Ginzburg-Landau theory. 189 5.8 Scaling of transport properties. 192 5.9 Extra equations. 195 5.10 Problems for chapter 5 . 196 6 Transport in Thermodynamics. 197 6.1 Introduction. 197 6.2 Some thermo-electric phenomena. 201 6.3 Non-equilibrium Thermodynamics. 204 6.4 Transport equations. 206 6.5 Macroscopic versus microscopic. 212 6.6 Thermo-electric e®ects. 219 A Questions submitted by students. 229 A.1 Questions for chapter 1. 229 A.2 Questions for chapter 2. 232 A.3 Questions for chapter 3. 235 A.4 Questions for chapter 4. 238 A.5 Questions for chapter 5. 240 B Summaries submitted by students. 243 B.1 Summaries for chapter 1. 243 B.2 Summaries for chapter 2. 245 B.3 Summaries for chapter 3. 247 B.4 Summaries for chapter 4. 248 B.5 Summaries for chapter 5. 250 CONTENTS V C Solutions to selected problems. 253 C.1 Solutions for chapter 1. 253 C.2 Solutions for chapter 2. 269 C.3 Solutions for chapter 3. 291 C.4 Solutions for chapter 4. 301 VI CONTENTS List of Figures 1.1 Carnot cycle in PV diagram . 15 1.2 Schematics of a Carnot engine. 16 1.3 Two engines feeding eachother. 17 1.4 Two Carnot engines in series. 20 2.1 Container with piston as internal divider. 41 2.2 Container where the internal degree of freedom becomes ex- ternal and hence can do work. 42 3.1 Model phase diagram for a simple model system. 92 3.2 Phase diagram for solid Ce. .................... 93 3.3 Gibbs energy across the phase boundary at constant temper- ature, wrong picture. ........................ 94 3.4 Gibbs energy across the phase boundary at constant temper- ature, correct picture. ....................... 94 3.5 Volume versus pressure at the phase transition. 95 3.6 Model phase diagram for a simple model system in V-T space. 96 3.7 Model phase diagram for a simple model system in p-V space. 96 3.8 Gibbs energy across the phase boundary at constant temper- ature for both phases. ....................... 98 3.9 Typical binary phase diagram with regions L=liquid, A(B)=B dissolved in A, and B(A)=A dissolved in B. 104 3.10 Solidi¯cation in a reversible process. 105 3.11 Typical binary phase diagram with intermediate compound AB, with regions L=liquid, A(B)=B dissolved in A, B(A)=A dissolved in B, and AB= AB with either A or B dissolved. 106 3.12 Typical binary phase diagram with intermediate compound AB, where the intermediate region is too small to discern from a line. ..............................107 3.13 Impossible binary phase diagram with intermediate compound AB, where the intermediate region is too small to discern from a line. ..............................107 3.14 Graphical solution of equation 3.21. 111 3.15 p-V curves in the van der Waals model. 113 VII VIII LIST OF FIGURES 3.16 p-V curves in the van der Waals model with negative values of the pressure. 113 3.17 p-V curve in the van der Waals model with areas correspond- ing to energies. 115 3.18 Unstable and meta-stable regions in the van der Waals p-V diagram. ...............................117 3.19 Energy versus volume showing that decomposition lowers the energy. ................................119 4.1 Heat capacity across the phase transition in the van der Waals model. .................................130 4.2 Heat capacity across the phase transition in an experiment. 130 4.3 Continuity of phase transition around critical point in p-T plane. .................................133 4.4 Continuity of phase around singular point. 134 4.5 Continuity of phase transition around critical point in H-T plane. .................................135 4.6 Magnetization versus temperature. 140 4.7 Forms of the Helmholtz free energy. 141 4.8 Entropy near the critical temperature. 142 4.9 Speci¯c heat near the critical temperature. 143 4.10 Magnetic susceptibility near the critical temperature. 144 4.11 Three possible forms of the Helmholtz free energy in case 2. 146 4.12 Values for m corresponding to a minimum in the free energy. 147 4.13 Magnetization as a function of temperature. 148 4.14 Hysteresis loop. 149 4.15 Critical behavior in ¯rst order phase transition. 151 6.1 Essential geometry of a thermocouple. 202 C.1 m versus T-H ............................311 C.2 Figure 1. ...............................314 INTRODUCTION IX Introduction. Thermodynamics??? Why? What? How? When? Where? Many questions to ask, so we will start with the ¯rst one. A frequent argument against studying thermodynamics is that we do not have to do this, since everything follows from statistical mechanics. In principle, this is, of course, true. This argument, how- ever, assumes that we know the exact description of a system on the microscopic scale, and that we can calculate the partition function. In practice, we can only calculate the partition function for a few simple cases, and in all other cases we need to make serious approximations. This is where thermodynamics plays an invaluable role. In thermodynamics we derive basic equations that all systems have to obey, and we derive these equations from a few basic principles. In this sense thermodynamics is a meta-theory, a theory of theories, very similar to a study of non-linear dynamics. Thermodynamics gives a framework for the results derived in statistical mechanics, and allows us to check if approximations made in statistical mechanical calculations violate some of these basic results. For example, if the calculated heat capacity in statistical mechanics is negative, we know we have a problem! Thermodynamics also gives us a language for the description of experimen- tal results. It de¯nes observable quantities, especially in the form of response functions. It gives the de¯nitions of critical exponents and transport properties. It allows analyzing experimental data in the framework of simple models, like equations of state. It provides a framework to organize experimental data. To say that we do not need this is quite arrogant, and assumes that if you can- not follow the (often very complicated) derivations in statistical mechanics you might as well give up. Thermodynamics is the meeting ground of experimenters and theorists. It gives the common language needed to connect experimental data and theoretical results. Classical mechanics has its limits of validity, and we need relativity and/or quantum mechanics to extend the domain of this theory. Thermodynamics and statistical mechanics do not have such a relation, though, contrary to what peo- ple claim who believe that we do not need thermodynamics. A prime example is the concept of entropy. Entropy is de¯ned as a measurable quantity in ther- modynamics, and the de¯nition relies both on the thermodynamic limit (a large system) and the existence of reservoirs (an even larger outside). We can also de¯ne entropy in statistical mechanics, but purists will only call this an entropy analogue. It is a good one, though, and it reproduces many of the well known results. The statistical mechanical de¯nition of entropy can also be applied to very small systems, and to the whole universe. But problems arise if we now also want to apply the second law of thermodynamics in these cases. Small system obey equations which are symmetric under time reversal, which contra- dicts the second law. Watch out for Maxwell's demons! On the large scale, the entropy of the universe is probably increasing (it is a very large system, and X INTRODUCTION by de¯nition isolated). But if the universe is in a well de¯ned quantum state, the entropy is and remains zero! These are very interesting questions, but for a di®erent course.
Recommended publications
  • Thermodynamics Notes
    Thermodynamics Notes Steven K. Krueger Department of Atmospheric Sciences, University of Utah August 2020 Contents 1 Introduction 1 1.1 What is thermodynamics? . .1 1.2 The atmosphere . .1 2 The Equation of State 1 2.1 State variables . .1 2.2 Charles' Law and absolute temperature . .2 2.3 Boyle's Law . .3 2.4 Equation of state of an ideal gas . .3 2.5 Mixtures of gases . .4 2.6 Ideal gas law: molecular viewpoint . .6 3 Conservation of Energy 8 3.1 Conservation of energy in mechanics . .8 3.2 Conservation of energy: A system of point masses . .8 3.3 Kinetic energy exchange in molecular collisions . .9 3.4 Working and Heating . .9 4 The Principles of Thermodynamics 11 4.1 Conservation of energy and the first law of thermodynamics . 11 4.1.1 Conservation of energy . 11 4.1.2 The first law of thermodynamics . 11 4.1.3 Work . 12 4.1.4 Energy transferred by heating . 13 4.2 Quantity of energy transferred by heating . 14 4.3 The first law of thermodynamics for an ideal gas . 15 4.4 Applications of the first law . 16 4.4.1 Isothermal process . 16 4.4.2 Isobaric process . 17 4.4.3 Isosteric process . 18 4.5 Adiabatic processes . 18 5 The Thermodynamics of Water Vapor and Moist Air 21 5.1 Thermal properties of water substance . 21 5.2 Equation of state of moist air . 21 5.3 Mixing ratio . 22 5.4 Moisture variables . 22 5.5 Changes of phase and latent heats .
    [Show full text]
  • Thermodynamics of Solar Energy Conversion in to Work
    Sri Lanka Journal of Physics, Vol. 9 (2008) 47-60 Institute of Physics - Sri Lanka Research Article Thermodynamic investigation of solar energy conversion into work W.T.T. Dayanga and K.A.I.L.W. Gamalath Department of Physics, University of Colombo, Colombo 03, Sri Lanka Abstract Using a simple thermodynamic upper bound efficiency model for the conversion of solar energy into work, the best material for a converter was obtained. Modifying the existing detailed terrestrial application model of direct solar radiation to include an atmospheric transmission coefficient with cloud factors and a maximum concentration ratio, the best shape for a solar concentrator was derived. Using a Carnot engine in detailed space application model, the best shape for the mirror of a concentrator was obtained. A new conversion model was introduced for a solar chimney power plant to obtain the efficiency of the power plant and power output. 1. INTRODUCTION A system that collects and converts solar energy in to mechanical or electrical power is important from various aspects. There are two major types of solar power systems at present, one using photovoltaic cells for direct conversion of solar radiation energy in to electrical energy in combination with electrochemical storage and the other based on thermodynamic cycles. The efficiency of a solar thermal power plant is significantly higher [1] compared to the maximum efficiency of twenty percent of a solar cell. Although the initial cost of a solar thermal power plant is very high, the running cost is lower compared to the other power plants. Therefore most countries tend to build solar thermal power plants.
    [Show full text]
  • Solar Thermal Energy
    22 Solar Thermal Energy Solar thermal energy is an application of solar energy that is very different from photovol- taics. In contrast to photovoltaics, where we used electrodynamics and solid state physics for explaining the underlying principles, solar thermal energy is mainly based on the laws of thermodynamics. In this chapter we give a brief introduction to that field. After intro- ducing some basics in Section 22.1, we will discuss Solar Thermal Heating in Section 22.2 and Concentrated Solar (electric) Power (CSP) in Section 22.3. 22.1 Solar thermal basics We start this section with the definition of heat, which sometimes also is called thermal energy . The molecules of a body with a temperature different from 0 K exhibit a disordered movement. The kinetic energy of this movement is called heat. The average of this kinetic energy is related linearly to the temperature of the body. 1 Usually, we denote heat with the symbol Q. As it is a form of energy, its unit is Joule (J). If two bodies with different temperatures are brought together, heat will flow from the hotter to the cooler body and as a result the cooler body will be heated. Dependent on its physical properties and temperature, this heat can be absorbed in the cooler body in two forms, sensible heat and latent heat. Sensible heat is that form of heat that results in changes in temperature. It is given as − Q = mC p(T2 T1), (22.1) where Q is the amount of heat that is absorbed by the body, m is its mass, Cp is its heat − capacity and (T2 T1) is the temperature difference.
    [Show full text]
  • Thermodynamic State Variables Gunt
    Fundamentals of thermodynamics 1 Thermodynamic state variables gunt Basic knowledge Thermodynamic state variables Thermodynamic systems and principles Change of state of gases In physics, an idealised model of a real gas was introduced to Equation of state for ideal gases: State variables are the measurable properties of a system. To make it easier to explain the behaviour of gases. This model is a p × V = m × Rs × T describe the state of a system at least two independent state system boundaries highly simplifi ed representation of the real states and is known · m: mass variables must be given. surroundings as an “ideal gas”. Many thermodynamic processes in gases in · Rs: spec. gas constant of the corresponding gas particular can be explained and described mathematically with State variables are e.g.: the help of this model. system • pressure (p) state process • temperature (T) • volume (V) Changes of state of an ideal gas • amount of substance (n) Change of state isochoric isobaric isothermal isentropic Condition V = constant p = constant T = constant S = constant The state functions can be derived from the state variables: Result dV = 0 dp = 0 dT = 0 dS = 0 • internal energy (U): the thermal energy of a static, closed Law p/T = constant V/T = constant p×V = constant p×Vκ = constant system. When external energy is added, processes result κ =isentropic in a change of the internal energy. exponent ∆U = Q+W · Q: thermal energy added to the system · W: mechanical work done on the system that results in an addition of heat An increase in the internal energy of the system using a pressure cooker as an example.
    [Show full text]
  • Empirical Modelling of Einstein Absorption Refrigeration System
    Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 75, Issue 3 (2020) 54-62 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879 Empirical Modelling of Einstein Absorption Refrigeration Open Access System Keng Wai Chan1,*, Yi Leang Lim1 1 School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia ARTICLE INFO ABSTRACT Article history: A single pressure absorption refrigeration system was invented by Albert Einstein and Received 4 April 2020 Leo Szilard nearly ninety-year-old. The system is attractive as it has no mechanical Received in revised form 27 July 2020 moving parts and can be driven by heat alone. However, the related literature and Accepted 5 August 2020 work done on this refrigeration system is scarce. Previous researchers analysed the Available online 20 September 2020 refrigeration system theoretically, both the system pressure and component temperatures were fixed merely by assumption of ideal condition. These values somehow have never been verified by experimental result. In this paper, empirical models were proposed and developed to estimate the system pressure, the generator temperature and the partial pressure of butane in the evaporator. These values are important to predict the system operation and the evaporator temperature. The empirical models were verified by experimental results of five experimental settings where the power input to generator and bubble pump were varied. The error for the estimation of the system pressure, generator temperature and partial pressure of butane in evaporator are ranged 0.89-6.76%, 0.23-2.68% and 0.28-2.30%, respectively.
    [Show full text]
  • Teaching Psychrometry to Undergraduates
    AC 2007-195: TEACHING PSYCHROMETRY TO UNDERGRADUATES Michael Maixner, U.S. Air Force Academy James Baughn, University of California-Davis Michael Rex Maixner graduated with distinction from the U. S. Naval Academy, and served as a commissioned officer in the USN for 25 years; his first 12 years were spent as a shipboard officer, while his remaining service was spent strictly in engineering assignments. He received his Ocean Engineer and SMME degrees from MIT, and his Ph.D. in mechanical engineering from the Naval Postgraduate School. He served as an Instructor at the Naval Postgraduate School and as a Professor of Engineering at Maine Maritime Academy; he is currently a member of the Department of Engineering Mechanics at the U.S. Air Force Academy. James W. Baughn is a graduate of the University of California, Berkeley (B.S.) and of Stanford University (M.S. and PhD) in Mechanical Engineering. He spent eight years in the Aerospace Industry and served as a faculty member at the University of California, Davis from 1973 until his retirement in 2006. He is a Fellow of the American Society of Mechanical Engineering, a recipient of the UCDavis Academic Senate Distinguished Teaching Award and the author of numerous publications. He recently completed an assignment to the USAF Academy in Colorado Springs as the Distinguished Visiting Professor of Aeronautics for the 2004-2005 and 2005-2006 academic years. Page 12.1369.1 Page © American Society for Engineering Education, 2007 Teaching Psychrometry to Undergraduates by Michael R. Maixner United States Air Force Academy and James W. Baughn University of California at Davis Abstract A mutli-faceted approach (lecture, spreadsheet and laboratory) used to teach introductory psychrometric concepts and processes is reviewed.
    [Show full text]
  • Thermodynamics of Interacting Magnetic Nanoparticles
    This is a repository copy of Thermodynamics of interacting magnetic nanoparticles. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/168248/ Version: Accepted Version Article: Torche, P., Munoz-Menendez, C., Serantes, D. et al. (6 more authors) (2020) Thermodynamics of interacting magnetic nanoparticles. Physical Review B. 224429. ISSN 2469-9969 https://doi.org/10.1103/PhysRevB.101.224429 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Thermodynamics of interacting magnetic nanoparticles P. Torche1, C. Munoz-Menendez2, D. Serantes2, D. Baldomir2, K. L. Livesey3, O. Chubykalo-Fesenko4, S. Ruta5, R. Chantrell5, and O. Hovorka1∗ 1School of Engineering and Physical Sciences, University of Southampton, Southampton SO16 7QF, UK 2Instituto de Investigaci´ons Tecnol´oxicas and Departamento de F´ısica Aplicada, Universidade de Santiago de Compostela,
    [Show full text]
  • Understanding Psychrometrics, Third Edition It’S Really a Mine of Information
    Gatley The Comprehensive Guide to Psychrometrics Understanding Psychrometrics serves as a lifetime reference manual and basic refresher course for those who use psychrometrics on a recurring basis and provides a four- to six-hour psychrometrics learning module to students; air- conditioning designers; agricultural, food process, and industrial process engineers; Understanding Psychrometrics meteorologists and others. Understanding Psychrometrics Third Edition New in the Third Edition • Revised chapters for wet-bulb temperature and relative humidity and a revised Appendix V that includes a summary of ASHRAE Research Project RP-1485. • New constants for the universal gas constant based on CODATA and a revised molar mass of dry air to account for the increase of CO2 in Earth’s atmosphere. • New IAPWS models for the calculation of water properties above and below freezing. • New tables based on the ASHRAE RP-1485 real moist-air numerical model using the ASHRAE LibHuAirProp add-ins for Excel®, MATLAB®, Mathcad®, and EES®. Includes Access to Bonus Materials and Sample Software • PDF files of 13 ultra-high-pressure and 12 existing ASHRAE psychrometric charts plus three new 0ºC to 400ºC charts. • A limited demonstration version of the ASHRAE LibHuAirProp add-in that allows users to duplicate portions of the real moist-air psychrometric tables in the ASHRAE Handbook—Fundamentals for both standard sea level atmospheric pressure and pressures from 5 to 10,000 kPa. • The hw.exe program from the second edition, included to enable users to compare the 2009 ASHRAE numerical model real moist-air psychrometric properties with the 1983 ASHRAE-Hyland-Wexler properties. Praise for Understanding Psychrometrics, Third Edition It’s really a mine of information.
    [Show full text]
  • Quantized Refrigerator for an Atomic Cloud
    Quantized refrigerator for an atomic cloud Wolfgang Niedenzu1, Igor Mazets2,3, Gershon Kurizki4, and Fred Jendrzejewski5 1Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria 2Vienna Center for Quantum Science and Technology (VCQ), Atominstitut, TU Wien, 1020 Vienna, Austria 3Wolfgang Pauli Institute, c/o Fakultät für Mathematik, Universität Wien, 1090 Vienna, Austria 4Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel 5Heidelberg University, Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany June 24, 2019 We propose to implement a quantized ther- a) mal machine based on a mixture of two atomic species. One atomic species implements the working medium and the other implements two (cold and hot) baths. We show that such a setup can be employed for the refrigeration of a large bosonic cloud starting above and end- ing below the condensation threshold. We ana- lyze its operation in a regime conforming to the b) quantized Otto cycle and discuss the prospects for continuous-cycle operation, addressing the experimental as well as theoretical limitations. <latexit sha1_base64="xPORfqE4jiv0WYJsIrI5dlUB7fE=">AAAC4HichVFNLwRBEH3G5/pcJC4uGxuJ02ZWJLgJVlwkJBYJsulpbU12vtLTK2HtD3ASV0dX/hC/xcGbNiSI6ElPvX5V9bqqy0sCPzWu+9Lj9Pb1DwwOFYZHRsfGJ4qTUwdp3NZS1WUcxPrIE6kK/EjVjW8CdZRoJUIvUIdeayPzH14qnfpxtG+uEnUaimbkn/tSGFKN4sxJKMyFFEGn1m1YrMOO7DaKZbfi2lX6Dao5KCNfu3HxFSc4QwyJNkIoRDDEAQRSfseowkVC7hQdcprIt36FLoaZ22aUYoQg2+K/ydNxzkY8Z5qpzZa8JeDWzCxhnnvLKnqMzm5VxCntG/e15Zp/3tCxylmFV7QeFQtWcYe8wQUj/ssM88jPWv7PzLoyOMeK7cZnfYllsj7ll84mPZpcy3pKqNnIJjU8e77kC0S0dVaQvfKnQsl2fEYrrFVWJcoVBfU0bfb6rIdjrv4c6m9QX6ysVty9pfLaej7vIcxiDgsc6jLWsI1dliFxg0c84dmRzq1z59x/hDo9ec40vi3n4R0eWph5</latexit>Beyond
    [Show full text]
  • Basic Thermodynamics-17ME33.Pdf
    Module -1 Fundamental Concepts & Definitions & Work and Heat MODULE 1 Fundamental Concepts & Definitions Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic processes. Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium, Zeroth law of thermodynamics, Temperature; concepts, scales, fixed points and measurements. Work and Heat Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. 10 Hours 1st Hour Brain storming session on subject topics Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems 2nd Hour Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and units, intensive and extensive properties. 3rd Hour Thermodynamic state, state point, state diagram, path and process, quasi-static
    [Show full text]
  • Thermodynamics the Study of the Transformations of Energy from One Form Into Another
    Thermodynamics the study of the transformations of energy from one form into another First Law: Heat and Work are both forms of Energy. in any process, Energy can be changed from one form to another (including heat and work), but it is never created or distroyed: Conservation of Energy Second Law: Entropy is a measure of disorder; Entropy of an isolated system Increases in any spontaneous process. OR This law also predicts that the entropy of an isolated system always increases with time. Third Law: The entropy of a perfect crystal approaches zero as temperature approaches absolute zero. ©2010, 2008, 2005, 2002 by P. W. Atkins and L. L. Jones ©2010, 2008, 2005, 2002 by P. W. Atkins and L. L. Jones A Molecular Interlude: Internal Energy, U, from translation, rotation, vibration •Utranslation = 3/2 × nRT •Urotation = nRT (for linear molecules) or •Urotation = 3/2 × nRT (for nonlinear molecules) •At room temperature, the vibrational contribution is small (it is of course zero for monatomic gas at any temperature). At some high temperature, it is (3N-5)nR for linear and (3N-6)nR for nolinear molecules (N = number of atoms in the molecule. Enthalpy H = U + PV Enthalpy is a state function and at constant pressure: ∆H = ∆U + P∆V and ∆H = q At constant pressure, the change in enthalpy is equal to the heat released or absorbed by the system. Exothermic: ∆H < 0 Endothermic: ∆H > 0 Thermoneutral: ∆H = 0 Enthalpy of Physical Changes For phase transfers at constant pressure Vaporization: ∆Hvap = Hvapor – Hliquid Melting (fusion): ∆Hfus = Hliquid –
    [Show full text]
  • Thermal Equilibrium State of the World Oceans
    Thermal equilibrium state of the ocean Rui Xin Huang Department of Physical Oceanography Woods Hole Oceanographic Institution Woods Hole, MA 02543, USA April 24, 2010 Abstract The ocean is in a non-equilibrium state under the external forcing, such as the mechanical energy from wind stress and tidal dissipation, plus the huge amount of thermal energy from the air-sea interface and the freshwater flux associated with evaporation and precipitation. In the study of energetics of the oceanic circulation it is desirable to examine how much energy in the ocean is available. In order to calculate the so-called available energy, a reference state should be defined. One of such reference state is the thermal equilibrium state defined in this study. 1. Introduction Chemical potential is a part of the internal energy. Thermodynamics of a multiple component system can be established from the definition of specific entropy η . Two other crucial variables of a system, including temperature and specific chemical potential, can be defined as follows 1 ⎛⎞∂η ⎛⎞∂η = ⎜⎟, μi =−Tin⎜⎟, = 1,2,..., , (1) Te m ⎝⎠∂ vm, i ⎝⎠∂ i ev, where e is the specific internal energy, v is the specific volume, mi and μi are the mass fraction and chemical potential for the i-th component. For a multiple component system, the change in total chemical potential is the sum of each component, dc , where c is the mass fraction of each component. The ∑i μii i mass fractions satisfy the constraint c 1 . Thus, the mass fraction of water in sea ∑i i = water satisfies dc=− c , and the total chemical potential for sea water is wi∑iw≠ N −1 ∑()μμiwi− dc .
    [Show full text]