DYNAMIC JAVA COMPONENTS in PERVASIVE SYSTEMS a Review of the Feasibility of Dynamic Data Processing on Wireless Platforms

Total Page:16

File Type:pdf, Size:1020Kb

DYNAMIC JAVA COMPONENTS in PERVASIVE SYSTEMS a Review of the Feasibility of Dynamic Data Processing on Wireless Platforms DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS A Review of the Feasibility of Dynamic Data Processing on Wireless Platforms Alexander Dannies, Javier Palafox-Albarrán, Walter Lang and Reiner Jedermann Institute for Microsensors, -actuators and -systems, University of Bremen, Otto-Hahn-Allee NW1, Bremen, Germany Keywords: Java, Data Processing, Wireless Sensors, OSGi, Dynamic Components, Pervasive Computing. Abstract: A wireless sensor network (WSN), which is one type of pervasive system, has the goal of networking heterogeneous systems and communicating through a gateway. However, it is also necessary to provide dynamic features to wireless nodes for updating applications and services during runtime. Dynamic updates can be handled either by the intrinsic features of Java or by advanced frameworks such as MIDP or OSGi. This paper investigates the software background and the feasibility of these three options in the context of WSNs. Java Virtual Machines were tested on sensor nodes and gateways currently available on the market. Two synthetic benchmarks were utilized to compare their performance. In addition, we tested the performance of an exemplary algorithm for a real life application during transportation in food logistics. Our experimental results showed that the performance of the benchmarks varied by a factor of more than 50, depending on the platform. Nevertheless, our chosen example algorithm could be executed on all platforms within an acceptable amount of CPU time. Pre-processing of data can be applied on wireless devices to reduce communication volume and provide conclusions instead of raw data. However the use of advanced frameworks, enabling extended dynamisation, are so far very limited. 1 INTRODUCTION on WSNs with distributed intelligence in which sensor populated scenarios may communicate with The vision of omnipresent information processing in internet-based solutions. everyday environments, for example in logistic Our vision of an intelligent network, in the transport and production processes by a network of project “Intelligent Container” (IMSAS, 2011), pervasive systems, becomes more and more feasible includes the capability to handle dynamic changes in with the decreasing cost and increasing the environment. The network nodes should be able computational power of wireless devices. to interpret and to react to environmental data and Pervasive systems have the aim of networking situations that were unknown at the time of their everyday life by the use of intelligent objects. They installation and initial programming as access to the can utilize different technologies and systems with container is not possible during transport. Therefore different computational capabilities. Wireless sensor it is necessary to provide dynamic features in networks (WSN) are examples where different wireless network nodes to allow updating during hardware types are involved. These devices runtime, not only of one application but also the communicate with the external world through a services provided. For example, the sensor can be gateway which possesses extended communication moved to a new environment, which requires a and processing capabilities. modified network protocol to make the best use of The nodes are placed in an environment in order the available gateways, whereas the remainder of the to sense physical parameters, communicate with the software remains unchanged. Alternatively, the network’s neighbours and determine useful actions. intelligent data processing may consist of multiple One of the most important challenges is to deploy services which are updated at different time applications in which families of hardware devices intervals. interact with each other. As mentioned by Vazquez, The concept of the Open Source Gateway Almeida, Doamo, Laiseca and Orduña (2009), it is initiative (OSGi) enables Java software modules to desirable to implement monitoring solutions based be updated or replaced on a system during runtime, for example remotely over an internet-connection. 58 Dannies A., Palafox-Albarrán J., Lang W. and Jedermann R.. DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS - A Review of the Feasibility of Dynamic Data Processing on Wireless Platforms. DOI: 10.5220/0003802300580066 In Proceedings of the 2nd International Conference on Pervasive Embedded Computing and Communication Systems (PECCS-2012), pages 58-66 ISBN: 978-989-8565-00-6 Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.) DYNAMIC JAVA COMPONENTS IN PERVASIVE SYSTEMS - A Review of the Feasibility of Dynamic Data Processing on Wireless Platforms Research has been carried out including OSGi in conceived for personal computers and is not suitable pervasive systems, but the main focus is telematics for resource constrained devices. Realising this systems (Lee et al., 2006) and mobile agents (Lee et need, Sun Microsystems introduced the Java 2 al., 2010) as its merits make it suitable for these Platform, Micro Edition. The second system, OSGi, purposes. is based on Java with a focus on modular, service- Implementing dynamic features in WSNs is even oriented architecture (SOA) as well as dynamic more complicated. The difference between WSNs installation and updates of bundles. and other pervasive systems is that the main concern is the energy consumption of the application. In 2.1 Java as Dynamic Language Rellermeyer et al., (2008) they go one step further, making the concept of OSGi compatible with Java is the most common language that meets the resource-constrained devices. They propose OSGi- requirement of the ability to extend software with like services in devices with no JVM and with dynamic code segments, because dynamic class limited operating system support. The only full loading is one of its intrinsic features. Some of the OSGi framework exists on the gateway. additional benefits one obtains by choosing Java are The question arises whether it is possible to have a object-oriented programming and automated full OSGi heterogeneous system which is energy memory and heap management (garbage collector). aware and intelligent, or whether pure Java without a Furthermore, using Java as a programming language middleware on top is sufficient at the lower levels. is programming platform-independent. This so The aim of this paper is to investigate the called concept of “write once, run anywhere” feasibility of OSGi and Java implementation in (WORA) becomes possible through the use of a Java several WSN platforms. Verifying this would allow virtual machine (JVM) which is adapted to specific a shift in the paradigm from a centralised WSN – in hardware architecture, e.g. x86 or ARM. The JVM which the majority of sensors are just collecting does not execute a compiled program, but rather a environmental data and transmitting these to one Java bytecode which will be interpreted differently processing unit – to a WSN with sensors which are on each platform. pre-processing data to reduce network traffic and save energy. The requirements for a specific 2.1.1 Limitations of JavaME application can differ from our selected application domain of interest, which is monitoring during It has to be questioned whether JavaME is still transportation in food logistics. The main issues to sufficient for the increasing demands of data be taken into account are the time needed for the processing algorithms. The situation-dependent platforms to perform complex computer operations loading and installation of new software bundles and the limitations of each of them regarding requires flexible class loaders. Storage of recorded resource requirements for enabling a dynamic data and knowledge might require a file system. platform. Most data analysis algorithms require floating or First, in section 2 we will provide an overview of even double precision arithmetic. Java and dynamic components. Section 3 will JavaSE is the standard platform for programming explain the methods used to test the performance in the Java language. It consists of a Java virtual and the configuration, followed by section 4 which machine for executing the compiled class-files (the describes the hardware platforms used in the Java program) and a set of libraries which makes it experiments. In section 5 we discuss the results and possible to access, e.g. the file system, graphical or finally offer conclusions. network interfaces from a Java program. The Java Micro Edition (JavaME) is aimed at embedded systems, e.g. mobile phones with limited 2 STATE OF THE ART resources. A developer programming for a platform using JavaME has to keep in mind that he is restricted to the features of JRE 1.3. Three Java and OSGi are two promising technologies for components belong to the JavaME-stack: the solving the challenge of dynamic software updates. configuration which contains the Java virtual The former is well-known to be portable and machine, the profile, which adds a certain set of independent of platform. Pervasive Java (also called API, and optional packages for additional wireless Java and mobile Java) attempts to bridge functionality in regards to the profile scope. There the gap between different devices and platforms. are two configurations: The Connected Device However, Java Standard Edition (JavaSE) was 59 PECCS 2012 - International Conference on Pervasive and Embedded Computing and Communication Systems Configuration (CDC) includes almost the entire suite and prelinked to each other, which results in a scope of JavaSE except for GUI-related libraries. In reduced size of around one third
Recommended publications
  • An OSEK/VDX-Based Multi-JVM for Automotive Appliances
    AN OSEK/VDX-BASED MULTI-JVM FOR AUTOMOTIVE APPLIANCES Christian Wawersich, Michael Stilkerich, Wolfgang Schr¨oder-Preikschat University of Erlangen-Nuremberg Distributed Systems and Operating Systems Erlangen, Germany E-Mail: [email protected], [email protected], [email protected] Abstract: The automotive industry has recent ambitions to integrate multiple applications from different micro controllers on a single, more powerful micro controller. The outcome of this integration process is the loss of the physical isolation and a more complex monolithic software. Memory protection mechanisms need to be provided that allow for a safe co-existence of heterogeneous software from different vendors on the same hardware, in order to prevent the spreading of an error to the other applications on the controller and leaving an unclear responsi- bility situation. With our prototype system KESO, we present a Java-based solution for ro- bust and safe embedded real-time systems that does not require any hardware protection mechanisms. Based on an OSEK/VDX operating system, we offer a familiar system creation process to developers of embedded software and also provide the key benefits of Java to the embedded world. To the best of our knowledge, we present the first Multi-JVM for OSEK/VDX operating systems. We report on our experiences in integrating Java and an em- bedded operating system with focus on the footprint and the real-time capabili- ties of the system. Keywords: Java, Embedded Real-Time Systems, Automotive, Isolation, KESO 1. INTRODUCTION Modern cars contain a multitude of micro controllers for a wide area of tasks, ranging from convenience features such as the supervision of the car’s audio system to safety relevant functions such as assisting the braking system of the car.
    [Show full text]
  • Secure Control Applications in Smart Homes and Buildings
    Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Secure Control Applications in Smart Homes and Buildings DISSERTATION submitted in partial fulfillment of the requirements for the degree of Doktor der Technischen Wissenschaften by Mag. Dipl.-Ing. Friedrich Praus Registration Number 0025854 to the Faculty of Informatics at the Vienna University of Technology Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner The dissertation has been reviewed by: Ao.Univ.Prof. Dipl.-Ing. Prof. Dr. Peter Palensky Dr.techn. Wolfgang Kastner Vienna, 1st October, 2015 Mag. Dipl.-Ing. Friedrich Praus Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Mag. Dipl.-Ing. Friedrich Praus Hallergasse 11/29, A-1110 Wien Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 1. Oktober 2015 Friedrich Praus v Kurzfassung Die zunehmende Integration von heterogenen Gebäudeautomationssystemen ermöglicht gesteigerten Komfort, Energieeffizienz, verbessertes Gebäudemanagement, Nachhaltig- keit sowie erweiterte Anwendungsgebiete, wie beispielsweise “Active Assisted Living” Szenarien. Diese Smart Homes und Gebäude sind heutzutage als dezentrale Systeme rea- lisiert, in denen eingebettete Geräte Prozessdaten über ein Netzwerk austauschen.
    [Show full text]
  • Android Cours 1 : Introduction `Aandroid / Android Studio
    Android Cours 1 : Introduction `aAndroid / Android Studio Damien MASSON [email protected] http://www.esiee.fr/~massond 21 f´evrier2017 R´ef´erences https://developer.android.com (Incontournable !) https://openclassrooms.com/courses/ creez-des-applications-pour-android/ Un tutoriel en fran¸caisassez complet et plut^ot`ajour... 2/52 Qu'est-ce qu'Android ? PME am´ericaine,Android Incorporated, cr´e´eeen 2003, rachet´eepar Google en 2005 OS lanc´een 2007 En 2015, Android est le syst`emed'exploitation mobile le plus utilis´edans le monde (>80%) 3/52 Qu'est-ce qu'Android ? Cinq couches distinctes : 1 le noyau Linux avec les pilotes ; 2 des biblioth`equeslogicielles telles que WebKit/Blink, OpenGL ES, SQLite ou FreeType ; 3 un environnement d'ex´ecutionet des biblioth`equespermettant d'ex´ecuterdes programmes pr´evuspour la plate-forme Java ; 4 un framework { kit de d´eveloppement d'applications ; 4/52 Android et la plateforme Java Jusqu'`asa version 4.4, Android comporte une machine virtuelle nomm´eeDalvik Le bytecode de Dalvik est diff´erentde celui de la machine virtuelle Java de Oracle (JVM) le processus de construction d'une application est diff´erent Code Java (.java) ! bytecode Java (.class/.jar) ! bytecode Dalvik (.dex) ! interpr´et´e L'ensemble de la biblioth`equestandard d'Android ressemble `a J2SE (Java Standard Edition) de la plateforme Java. La principale diff´erenceest que les biblioth`equesd'interface graphique AWT et Swing sont remplac´eespar des biblioth`equesd'Android. 5/52 Android Runtime (ART) A` partir de la version 5.0 (2014), l'environnement d'ex´ecution ART (Android RunTime) remplace la machine virtuelle Dalvik.
    [Show full text]
  • Jamaicavm 8.1 — User Manual
    JamaicaVM 8.1 — User Manual Java Technology for Critical Embedded Systems aicas GmbH 2 JamaicaVM 8.1 — User Manual: Java Technology for Critical Embedded Systems JamaicaVM 8.1, Release 1. Published May 31, 2017. c 2001–2017 aicas GmbH, Karlsruhe. All rights reserved. No licenses, expressed or implied, are granted with respect to any of the technology described in this publication. aicas GmbH retains all intellectual property rights associated with the technology described in this publication. This publication is intended to assist application developers to develop applications only for the Jamaica Virtual Machine. Every effort has been made to ensure that the information in this publication is accurate. aicas GmbH is not responsible for printing or clerical errors. Although the information herein is provided with good faith, the supplier gives neither warranty nor guarantee that the information is correct or that the results described are obtainable under end-user conditions. aicas GmbH phone +49 721 663 968-0 Emmy-Noether-Straße 9 fax +49 721 663 968-99 76131 Karlsruhe email [email protected] Germany web http://www.aicas.com aicas incorporated phone +1 203 359 5705 6 Landmark Square, Suite 400 Stamford CT 06901 email [email protected] USA web http://www.aicas.com aicas GmbH phone +33 1 4997 1762 9 Allee de l’Arche fax +33 1 4997 1700 92671 Paris La Defense email [email protected] France web http://www.aicas.com This product includes software developed by IAIK of Graz University of Technology. This software is based in part on the work of the Independent JPEG Group.
    [Show full text]
  • Partner Directory Wind River Partner Program
    PARTNER DIRECTORY WIND RIVER PARTNER PROGRAM The Internet of Things (IoT), cloud computing, and Network Functions Virtualization are but some of the market forces at play today. These forces impact Wind River® customers in markets ranging from aerospace and defense to consumer, networking to automotive, and industrial to medical. The Wind River® edge-to-cloud portfolio of products is ideally suited to address the emerging needs of IoT, from the secure and managed intelligent devices at the edge to the gateway, into the critical network infrastructure, and up into the cloud. Wind River offers cross-architecture support. We are proud to partner with leading companies across various industries to help our mutual customers ease integration challenges; shorten development times; and provide greater functionality to their devices, systems, and networks for building IoT. With more than 200 members and still growing, Wind River has one of the embedded software industry’s largest ecosystems to complement its comprehensive portfolio. Please use this guide as a resource to identify companies that can help with your development across markets. For updates, browse our online Partner Directory. 2 | Partner Program Guide MARKET FOCUS For an alphabetical listing of all members of the *Clavister ..................................................37 Wind River Partner Program, please see the Cloudera ...................................................37 Partner Index on page 139. *Dell ..........................................................45 *EnterpriseWeb
    [Show full text]
  • Actor-Oriented Programming for Resource Constrained Multiprocessor Networks on Chip
    Actor-Oriented Programming for Resource Constrained Multiprocessor Networks on Chip Gary J. Plumbridge PhD University of York Computer Science August 2015 for Ellie Abstract Multiprocessor Networks on Chip (MPNoCs) are an attractive architecture for inte- grated circuits as they can benefit from the improved performance of ever smaller tran- sistors but are not severely constrained by the poor performance of global on-chip wires. As the number of processors increases it becomes ever more expensive to provide co- herent shared memory but this is a foundational assumption of thread-level parallelism. Threaded models of concurrency cannot efficiently address architectures where shared memory is not coherent or does not exist. In this thesis an extended actor oriented programming model is proposed to en- able the design of complex and general purpose software for highly parallel and de- centralised multiprocessor architectures. This model requires the encapsulation of an execution context and state into isolated Machines which may only initiate communica- tion with one another via explicitly named channels. An emphasis on message passing and strong isolation of computation encourages application structures that are congru- ent with the nature of non-shared memory multiprocessors, and the model also avoids creating dependences on specific hardware topologies. A realisation of the model called Machine Java is presented to demonstrate the ap- plicability of the model to a general purpose programming language. Applications designed with this framework are shown to be capable of scaling to large numbers of processors and remain independent of the hardware targets. Through the use of an efficient compilation technique, Machine Java is demonstrated to be portable across sev- eral architectures and viable even in the highly constrained context of an FPGA hosted MPNoC.
    [Show full text]
  • Smart Dynamic Software Components Enabling Decision Support in Machine-To-Machine Networks
    IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013 ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 www.IJCSI.org 540 Smart dynamic software components enabling decision support in Machine-to-machine networks Alexander Dannies1*, Javier Palafox-Albarrán1, Walter Lang1 and Reiner Jedermann1 1 Institute for Microsensors, -actuators and -systems, University of Bremen Bremen, Bremen, Germany technologies more ubiquitous, devices have to collect Abstract information from a high number of devices distributed in The future Internet of Things will be extended by machine-to- the environment. For such a detailed supervision CRN are machine communication technologies in order to include sensor rather disadvantageous for the following reasons: information. The overwhelming amount of data will require autonomous decision making processes which are directly Communication costs have to be kept as low as executed at the location where data is generated or measured. An possible. intelligent sensor system needs to be able to adapt to new parameters in its surrounding unknown at the time of deployment. Network protocols have to be optimized for In our paper we show that Java enables software updates on transmission of small packets of sensor data mobile devices and also that it is possible to run algorithms consuming as little energy as possible instead of required for decision making processes on wireless sensor enabling global communication. platforms based on Java. Keywords: Machine-to-Machine communication, Internet of In many applications, such as the monitoring Things, autonomous logistics, Java, dynamic updates, OSGi. inside large buildings or rural regions, the supervised area will not be fully covered by the CRN of an external operator.
    [Show full text]
  • Interrupt Handlers in Java
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 Interrupt Handlers in Java Korsholm, Stephan; Schoeberl, Martin; Ravn, Anders P. Published in: Proceedings of the 11th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2008) Link to article, DOI: 10.1109/ISORC.2008.68 Publication date: 2008 Document Version Early version, also known as pre-print Link back to DTU Orbit Citation (APA): Korsholm, S., Schoeberl, M., & Ravn, A. P. (2008). Interrupt Handlers in Java. In Proceedings of the 11th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2008) (pp. 453-457) https://doi.org/10.1109/ISORC.2008.68 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Interrupt Handlers in Java Stephan Korsholm Martin Schoeberl Department of Computer Science Institute of Computer Engineering Aalborg University DK-9220 Aalborg Vienna University of Technology, Austria [email protected] [email protected] Anders P.
    [Show full text]
  • Concurrent Compaction Using a Field Pinning Protocol
    Concurrent Compaction using a Field Pinning Protocol Erik Osterlund¨ Welf Lowe¨ Linnaeus University, Sweden Linnaeus University, Sweden [email protected] [email protected] Abstract objects and relocate them, i.e., perform compaction. Then Compaction of memory in long running systems has always the unused memory (garbage) is reclaimed. been important. The latency of compaction increases in to- We distinguish logical objects from their physical mem- day’s systems with high memory demands and large heaps. ory locations referred to as cells; a fragmented heap memory To deal with this problem, we present a lock-free protocol al- region is called from-space, a continuous heap memory re- gion is called to-space.1 lowing for copying concurrent with the application running, 2 which reduces the latencies of compaction radically. It pro- There are two different actors in GC. The garbage col- vides theoretical progress guarantees for copying and appli- lector(s) and the mutator(s). The garbage collector finds live cation threads without making it practically infeasible, with objects by scanning the stacks and globals for references to performance overheads of 15% on average. The algorithm root objects, identifies other live objects by computing the paves the way for a future lock-free Garbage Collector. transitive closure of these roots, and determines the con- demned set of potential objects for relocation. The garbage Categories and Subject Descriptors D.3.4 [Programming collector compacts memory by relocating live objects of the Languages]: Processors—memory management, garbage condemned set: it copies the payload of cells in from-space collection; D.1.3 [Programming Techniques]: Concurrent to cells in to-space and then remaps incoming references, Programming—parallel programming i.e., updates them to refer to the to-space cell.
    [Show full text]
  • Cooperative Framework for Open Real-Time Systems
    Departamento de Engenharia Informática Instituto Superior de Engenharia do Porto Cooperative Framework for Open Real-Time Systems Cláudio Roberto Ribeiro Maia Dissertação para a obtenção do Grau de Mestre em Engenharia Informática Área de especialização em Arquitectura, Sistemas e Redes Orientador Professor Doutor Luís Miguel Pinho Nogueira Júri Presidente: Professora Doutora Maria de Fátima Coutinho Rodrigues, Professora Coordenadora no Departamento de Engenharia Informática do Instituto Superior de Engenharia do Porto Vogais: Professor Doutor Alexandre Manuel Tavares Bragança, Professor Adjunto no Departamento de Engenharia Informática do Instituto Superior de Engenharia do Porto Professor Doutor Luís Miguel Pinho Nogueira, Professor Adjunto no Departamento de Engenharia Informática do Instituto Superior de Engenharia do Porto Porto, Fevereiro de 2011 ACKNOWLEDGEMENTS Since this project started back in October 2009, many people contributed by sharing experiences, guid- ance, knowledge and wisdom. In order to show my respect and gratitude to them, I would like to take this opportunity to do it. First of all, I would like to thank all the people at ISEP that in some way provided me with their support. More specifically, my school collegues for keeping me sane, the teachers for clarifying me with all sort of answers, the security guards for opening the doors during the night, the cleaning ladies for their warmful "Good mornings" and the remaining people to whom I have spoken and discussed about many different topics. I would also like to thank CISTER Research Centre for the opportunity of working in the CooperatES (Cooperative Embedded Systems) project (PTDC/EIA/71624/2006), which was the main driver to the MSc work presented in this document.
    [Show full text]
  • Java on Bare Metal with the Fiji VM
    Real Time Java on resource-constrained platforms with Fiji VM Filip Pizlo Lukasz Ziarek Jan Vitek Department of Computer Science, Purdue University, W. Lafayette, IN, 47909 Fiji Systems, LLC, Indianapolis, IN 46202. E-mail: {fil,luke,jan}@fiji-systems.com Abstract 3. A survey of limitations Java virtual machines face when tar- Real-time Java is quickly emerging as a platform for building geting hard real-time systems. We discuss our previous experi- safety-critical embedded systems. The real-time variants of Java, ence embedding Java virtual machines and identify six key goals including [8, 15], are attractive alternatives to Ada and C since state-of-the-art virtual machines should address to be better suited they provide a cleaner, simpler, and safer programming model. for hard real-time and mission critical application domains. Unfortunately, current real-time Java implementations have trouble 4. A concise description of the Fiji VM compiler and runtime scaling down to very hard real-time embedded settings, where system. We describe the unique features of the Fiji VM compiler memory is scarce and processing power is limited. In this paper, we and runtime system and their implementation. We address each of describe the architecture of the Fiji VM, which enables vanilla Java the six goals in the implementation and design of the Fiji VM. applications to run in very hard environments, including booting on bare hardware with only very rudimentary operating system 5. A performance comparison between the Fiji VM and state-of- support. We also show that our minimalistic approach delivers the-art, server-class Java VMs.
    [Show full text]
  • Efficient Compilation of .NET Programs for Embedded Systems
    Journal of Object Technology Published by AITO — Association Internationale pour les Technologies Objets, c JOT 2011 Online at http://www.jot.fm. Efficient Compilation of .NET Programs for Embedded Systems Olivier Sallenaveab Roland Ducournaub a. Cortus S.A., Montpellier, France http://www.cortus.com b. LIRMM — CNRS and Université Montpellier 2, France http://www.lirmm.fr Abstract Compiling under the closed-world assumption (CWA) has been shown to be an appropriate way for implementing object-oriented lan- guages such as Java on low-end embedded systems. In this paper, we ex- plore the implications of using whole program optimizations such as Rapid Type Analysis (RTA) and coloring on programs targeting the .Net infras- tructure. We extended RTA so that it takes into account .Net specific features such as (i) array covariance, a language feature also supported in Java, (ii) generics, whose specifications in .Net impacts type analysis and (iii) delegates, which encapsulate methods within objects. We also use an intraprocedural control flow analysis in addition to RTA . We eval- uated the optimizations that we implemented on programs written in C#. Preliminary results show a noticeable reduction of the code size, class hi- erarchy and polymorphism of the programs we optimize. Array covariance is safe in almost all cases, and some delegate calls can be implemented as direct calls. Keywords array covariance, closed-world assumption, delegate, late bind- ing, subtype test, type analysis 1 Introduction High-end embedded systems such as mobile phones have widely adopted object- oriented languages like Java. Object-oriented programming offers code reuse through inheritance and more reliable designs, which improves the productivity in software development.
    [Show full text]