Efficient Compilation of .NET Programs for Embedded Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An OSEK/VDX-Based Multi-JVM for Automotive Appliances
AN OSEK/VDX-BASED MULTI-JVM FOR AUTOMOTIVE APPLIANCES Christian Wawersich, Michael Stilkerich, Wolfgang Schr¨oder-Preikschat University of Erlangen-Nuremberg Distributed Systems and Operating Systems Erlangen, Germany E-Mail: [email protected], [email protected], [email protected] Abstract: The automotive industry has recent ambitions to integrate multiple applications from different micro controllers on a single, more powerful micro controller. The outcome of this integration process is the loss of the physical isolation and a more complex monolithic software. Memory protection mechanisms need to be provided that allow for a safe co-existence of heterogeneous software from different vendors on the same hardware, in order to prevent the spreading of an error to the other applications on the controller and leaving an unclear responsi- bility situation. With our prototype system KESO, we present a Java-based solution for ro- bust and safe embedded real-time systems that does not require any hardware protection mechanisms. Based on an OSEK/VDX operating system, we offer a familiar system creation process to developers of embedded software and also provide the key benefits of Java to the embedded world. To the best of our knowledge, we present the first Multi-JVM for OSEK/VDX operating systems. We report on our experiences in integrating Java and an em- bedded operating system with focus on the footprint and the real-time capabili- ties of the system. Keywords: Java, Embedded Real-Time Systems, Automotive, Isolation, KESO 1. INTRODUCTION Modern cars contain a multitude of micro controllers for a wide area of tasks, ranging from convenience features such as the supervision of the car’s audio system to safety relevant functions such as assisting the braking system of the car. -
Secure Control Applications in Smart Homes and Buildings
Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Secure Control Applications in Smart Homes and Buildings DISSERTATION submitted in partial fulfillment of the requirements for the degree of Doktor der Technischen Wissenschaften by Mag. Dipl.-Ing. Friedrich Praus Registration Number 0025854 to the Faculty of Informatics at the Vienna University of Technology Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner The dissertation has been reviewed by: Ao.Univ.Prof. Dipl.-Ing. Prof. Dr. Peter Palensky Dr.techn. Wolfgang Kastner Vienna, 1st October, 2015 Mag. Dipl.-Ing. Friedrich Praus Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Mag. Dipl.-Ing. Friedrich Praus Hallergasse 11/29, A-1110 Wien Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 1. Oktober 2015 Friedrich Praus v Kurzfassung Die zunehmende Integration von heterogenen Gebäudeautomationssystemen ermöglicht gesteigerten Komfort, Energieeffizienz, verbessertes Gebäudemanagement, Nachhaltig- keit sowie erweiterte Anwendungsgebiete, wie beispielsweise “Active Assisted Living” Szenarien. Diese Smart Homes und Gebäude sind heutzutage als dezentrale Systeme rea- lisiert, in denen eingebettete Geräte Prozessdaten über ein Netzwerk austauschen. -
D2.1.5 Final Reports on Requirements, Architecture, and Components for Single Trusted Clouds
D2.1.5 Final Reports on Requirements, Architecture, and Components for Single Trusted Clouds Project number: 257243 Project acronym: TClouds Trustworthy Clouds - Privacy and Re- Project title: silience for Internet-scale Critical Infras- tructure Start date of the project: 1st October, 2010 Duration: 36 months Programme: FP7 IP Deliverable type: Report Deliverable reference number: ICT-257243 / D2.1.5 / 1.0 Activity and Work package contributing Activity 2 / WP 2.1 to deliverable: Due date: September 2013 – M36 Actual submission date: 30th September, 2013 Responsible organisation: SRX Editor: Norbert Schirmer Dissemination level: Public Revision: 1.0 Abstract: cf. Executive Summary Trusted computing, remote attestation, se- cure logging, confidentiality for commodity Keywords: cloud storage, efficient resilience, tailored components D2.1.5 – Final Reports on Requirements, Architecture, and Components for Single Trusted Clouds Editor Norbert Schirmer (SRX) Contributors Johannes Behl, Stefan Brenner, Klaus Stengel (TUBS) Nicola Barresi, Gianluca Ramunno, Roberto Sassu, Paolo Smiraglia (POL) Alexander Büger, Norbert Schirmer (SRX) Tobias Distler, Andreas Ruprecht (FAU) Sören Bleikertz, Zoltan Nagy (IBM) Imad M. Abbadi, Anbang Ruad (OXFD) Sven Bugiel, Hugo Hideler, Stefan Nürnberger (TUDA) Disclaimer This work was partially supported by the European Commission through the FP7-ICT program under project TClouds, number 257243. The information in this document is provided as is, and no warranty is given or implied that the information is fit for -
Android Cours 1 : Introduction `Aandroid / Android Studio
Android Cours 1 : Introduction `aAndroid / Android Studio Damien MASSON [email protected] http://www.esiee.fr/~massond 21 f´evrier2017 R´ef´erences https://developer.android.com (Incontournable !) https://openclassrooms.com/courses/ creez-des-applications-pour-android/ Un tutoriel en fran¸caisassez complet et plut^ot`ajour... 2/52 Qu'est-ce qu'Android ? PME am´ericaine,Android Incorporated, cr´e´eeen 2003, rachet´eepar Google en 2005 OS lanc´een 2007 En 2015, Android est le syst`emed'exploitation mobile le plus utilis´edans le monde (>80%) 3/52 Qu'est-ce qu'Android ? Cinq couches distinctes : 1 le noyau Linux avec les pilotes ; 2 des biblioth`equeslogicielles telles que WebKit/Blink, OpenGL ES, SQLite ou FreeType ; 3 un environnement d'ex´ecutionet des biblioth`equespermettant d'ex´ecuterdes programmes pr´evuspour la plate-forme Java ; 4 un framework { kit de d´eveloppement d'applications ; 4/52 Android et la plateforme Java Jusqu'`asa version 4.4, Android comporte une machine virtuelle nomm´eeDalvik Le bytecode de Dalvik est diff´erentde celui de la machine virtuelle Java de Oracle (JVM) le processus de construction d'une application est diff´erent Code Java (.java) ! bytecode Java (.class/.jar) ! bytecode Dalvik (.dex) ! interpr´et´e L'ensemble de la biblioth`equestandard d'Android ressemble `a J2SE (Java Standard Edition) de la plateforme Java. La principale diff´erenceest que les biblioth`equesd'interface graphique AWT et Swing sont remplac´eespar des biblioth`equesd'Android. 5/52 Android Runtime (ART) A` partir de la version 5.0 (2014), l'environnement d'ex´ecution ART (Android RunTime) remplace la machine virtuelle Dalvik. -
Jamaicavm 8.1 — User Manual
JamaicaVM 8.1 — User Manual Java Technology for Critical Embedded Systems aicas GmbH 2 JamaicaVM 8.1 — User Manual: Java Technology for Critical Embedded Systems JamaicaVM 8.1, Release 1. Published May 31, 2017. c 2001–2017 aicas GmbH, Karlsruhe. All rights reserved. No licenses, expressed or implied, are granted with respect to any of the technology described in this publication. aicas GmbH retains all intellectual property rights associated with the technology described in this publication. This publication is intended to assist application developers to develop applications only for the Jamaica Virtual Machine. Every effort has been made to ensure that the information in this publication is accurate. aicas GmbH is not responsible for printing or clerical errors. Although the information herein is provided with good faith, the supplier gives neither warranty nor guarantee that the information is correct or that the results described are obtainable under end-user conditions. aicas GmbH phone +49 721 663 968-0 Emmy-Noether-Straße 9 fax +49 721 663 968-99 76131 Karlsruhe email [email protected] Germany web http://www.aicas.com aicas incorporated phone +1 203 359 5705 6 Landmark Square, Suite 400 Stamford CT 06901 email [email protected] USA web http://www.aicas.com aicas GmbH phone +33 1 4997 1762 9 Allee de l’Arche fax +33 1 4997 1700 92671 Paris La Defense email [email protected] France web http://www.aicas.com This product includes software developed by IAIK of Graz University of Technology. This software is based in part on the work of the Independent JPEG Group. -
Partner Directory Wind River Partner Program
PARTNER DIRECTORY WIND RIVER PARTNER PROGRAM The Internet of Things (IoT), cloud computing, and Network Functions Virtualization are but some of the market forces at play today. These forces impact Wind River® customers in markets ranging from aerospace and defense to consumer, networking to automotive, and industrial to medical. The Wind River® edge-to-cloud portfolio of products is ideally suited to address the emerging needs of IoT, from the secure and managed intelligent devices at the edge to the gateway, into the critical network infrastructure, and up into the cloud. Wind River offers cross-architecture support. We are proud to partner with leading companies across various industries to help our mutual customers ease integration challenges; shorten development times; and provide greater functionality to their devices, systems, and networks for building IoT. With more than 200 members and still growing, Wind River has one of the embedded software industry’s largest ecosystems to complement its comprehensive portfolio. Please use this guide as a resource to identify companies that can help with your development across markets. For updates, browse our online Partner Directory. 2 | Partner Program Guide MARKET FOCUS For an alphabetical listing of all members of the *Clavister ..................................................37 Wind River Partner Program, please see the Cloudera ...................................................37 Partner Index on page 139. *Dell ..........................................................45 *EnterpriseWeb -
Code Coagulation Is an Effective Compilation Technique
CODE COAGULATION IS AN EFFECTIVE COMPILATION TECHNIQUE FOR THE JVM by Shruthi Padmanabhan Bachelor of Engineering in Information Science, Visvesvaraya Technological University, 2009 A thesis presented to Ryerson University in partial fulfillment of the requirements for the degree of Master of Science in the program of Computer Science Toronto, Ontario, Canada, 2018 c Shruthi Padmanabhan, 2018 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public for the purpose of scholarly research only. ii Abstract CODE COAGULATION IS AN EFFECTIVE COMPILATION TECHNIQUE FOR THE JVM Shruthi Padmanabhan Master of Science, Computer Science Ryerson University, 2018 Compilers are the interface between programmers and computers. The output of a com- piler determines the speed of the resulting program as well as its energy footprint { of increasing importance in this world of climate change and battery-dependent computing. Code coagulation has the potential to improve that performance, particularly relative to (JIT) interpreters. Java and related languages are in wide use, so addressing their per- formance has large potential impact. Optijava is an experimental compiler that applies code coagulation to Java programs. -
Actor-Oriented Programming for Resource Constrained Multiprocessor Networks on Chip
Actor-Oriented Programming for Resource Constrained Multiprocessor Networks on Chip Gary J. Plumbridge PhD University of York Computer Science August 2015 for Ellie Abstract Multiprocessor Networks on Chip (MPNoCs) are an attractive architecture for inte- grated circuits as they can benefit from the improved performance of ever smaller tran- sistors but are not severely constrained by the poor performance of global on-chip wires. As the number of processors increases it becomes ever more expensive to provide co- herent shared memory but this is a foundational assumption of thread-level parallelism. Threaded models of concurrency cannot efficiently address architectures where shared memory is not coherent or does not exist. In this thesis an extended actor oriented programming model is proposed to en- able the design of complex and general purpose software for highly parallel and de- centralised multiprocessor architectures. This model requires the encapsulation of an execution context and state into isolated Machines which may only initiate communica- tion with one another via explicitly named channels. An emphasis on message passing and strong isolation of computation encourages application structures that are congru- ent with the nature of non-shared memory multiprocessors, and the model also avoids creating dependences on specific hardware topologies. A realisation of the model called Machine Java is presented to demonstrate the ap- plicability of the model to a general purpose programming language. Applications designed with this framework are shown to be capable of scaling to large numbers of processors and remain independent of the hardware targets. Through the use of an efficient compilation technique, Machine Java is demonstrated to be portable across sev- eral architectures and viable even in the highly constrained context of an FPGA hosted MPNoC. -
Smart Dynamic Software Components Enabling Decision Support in Machine-To-Machine Networks
IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013 ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 www.IJCSI.org 540 Smart dynamic software components enabling decision support in Machine-to-machine networks Alexander Dannies1*, Javier Palafox-Albarrán1, Walter Lang1 and Reiner Jedermann1 1 Institute for Microsensors, -actuators and -systems, University of Bremen Bremen, Bremen, Germany technologies more ubiquitous, devices have to collect Abstract information from a high number of devices distributed in The future Internet of Things will be extended by machine-to- the environment. For such a detailed supervision CRN are machine communication technologies in order to include sensor rather disadvantageous for the following reasons: information. The overwhelming amount of data will require autonomous decision making processes which are directly Communication costs have to be kept as low as executed at the location where data is generated or measured. An possible. intelligent sensor system needs to be able to adapt to new parameters in its surrounding unknown at the time of deployment. Network protocols have to be optimized for In our paper we show that Java enables software updates on transmission of small packets of sensor data mobile devices and also that it is possible to run algorithms consuming as little energy as possible instead of required for decision making processes on wireless sensor enabling global communication. platforms based on Java. Keywords: Machine-to-Machine communication, Internet of In many applications, such as the monitoring Things, autonomous logistics, Java, dynamic updates, OSGi. inside large buildings or rural regions, the supervised area will not be fully covered by the CRN of an external operator. -
Master En Modelización Matemática, Estadística Y Computación 2011-2012
MASTER EN MODELIZACIÓN MATEMÁTICA, ESTADÍSTICA Y COMPUTACIÓN 2011-2012 Curso: Bases de datos y programación orientada a objetos Parte POO [email protected] http://gtts.ehu.es/German MASTER EN MODELIZACIÓN MATEMÁTICA, ESTADÍSTICA Y COMPUTACIÓN 2011-2012 Curso: Bases de datos y programación orientada a objetos Parte POO PREMISAS 1) Es esencial asimilar lo que son clases y objetos 2) Se utilizará JAVA. Aprenderemos el núcleo del lenguaje y cómo ser autosuficientes con las librerías. 3) Nos centraremos en las capacidades de E/S y en la conexión a bases de datos. 4) Se presentará una aplicación web que acceda a la base de datos de MySQL. [email protected] http://gtts.ehu.es/German Bases de datos y Java * Java y bases de datos 1. Java necesita un modelo de persistencia para tener éxito real. 2. Larga historia de Sun con bases de datos poco exitosas. 3. Dos bases de datos dominan: Oracle (comercial) y MySQL (libre). 4. Sun compra MySQL (enero 2008). 5. Oracle compra SUN (abril 2009) (ver dimensiones SUN /ORACLE). * La importancia de las bases de datos en la economía mundial [email protected] http://gtts.ehu.es/German 18:1 SUN ocupa el puesto 186 [email protected] http://gtts.ehu.es/German Bases de datos y Java [email protected] http://gtts.ehu.es/German [email protected] http://gtts.ehu.es/German Antes de nada… la máquina virtual Proprietary/closed source implementations "Write Once, Run Anywhere" * Hewlett-Packard's Java for HP-UX, OpenVMS, Tru64 and Reliant (Tandem) UNIX platforms * J9 VM from IBM, for AIX, Linux, MVS, OS/400, Pocket PC, z/OS * Mac OS Runtime for Java (MRJ) from Apple Inc. -
Java Magazine, November/December 2017
DYNAMIC METHOD INVOCATION 67 | INSIDE JAVA CARD 77 | JAVA QUIZ 91 NOVEMBER/DECEMBER 2017 magazine By and for the Java community JAVA EE 8 WHAT YOU NEED TO KNOW 13 23 43 56 SERVLET 4.0 CDI 2.0 JPA 2.2 MICROPROFILE ORACLE.COM/JAVAMAGAZINE //table of contents / COVER FEATURES 23 43 56 CDI 2.0: MAKING WHAT’S NEW IN JPA 2.2 ECLIPSE MICROPROFILE: DEPENDENCY INJECTION By Josh Juneau THE LIGHT ENTERPRISE A LOT EASIER Streaming results, better date JAVA OPTION By Arjan Tijms conversions, and new annotations By Mert Çalişkan A new spec, new features, are just a few of the many handy Examining a Java EE architecture 13 and new annotations. What’s improvements. designed for microservices and SERVLET 4.0: DOING MORE FASTER not to like? distributed applications By Alex Theedom A major new release of the Servlet API embraces the HTTP/2 protocol and anticipates resource requirements. OTHER FEATURES DEPARTMENTS 67 91 05 11 Understanding Java Method Fix This From the Editor Java Proposals of Interest Invocation with Invokedynamic By Simon Roberts Java EE 8 development goes JEP 295: Ahead-of-Time Compilation By Ben Evans Our latest quiz with questions that test open source. to Native Binaries The instruction added in Java 7 makes intermediate and advanced knowledge 07 42 it possible to resolve method calls dynam- of the language ically at runtime. Java Books User Groups Review of Ken Kousen’s Modern The Netherlands JUG 77 Java Recipes 101 An Introduction to Java Card 09 By Nicolas Ponsini and Florian Tournier Contact Us The smallest Java platform is one of the Events Have a comment? Suggestion? Want to most widely distributed. -
Interrupt Handlers in Java
Downloaded from orbit.dtu.dk on: Oct 06, 2021 Interrupt Handlers in Java Korsholm, Stephan; Schoeberl, Martin; Ravn, Anders P. Published in: Proceedings of the 11th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2008) Link to article, DOI: 10.1109/ISORC.2008.68 Publication date: 2008 Document Version Early version, also known as pre-print Link back to DTU Orbit Citation (APA): Korsholm, S., Schoeberl, M., & Ravn, A. P. (2008). Interrupt Handlers in Java. In Proceedings of the 11th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2008) (pp. 453-457) https://doi.org/10.1109/ISORC.2008.68 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Interrupt Handlers in Java Stephan Korsholm Martin Schoeberl Department of Computer Science Institute of Computer Engineering Aalborg University DK-9220 Aalborg Vienna University of Technology, Austria [email protected] [email protected] Anders P.