An OSEK OS API and Memory Management for Java
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An OSEK/VDX-Based Multi-JVM for Automotive Appliances
AN OSEK/VDX-BASED MULTI-JVM FOR AUTOMOTIVE APPLIANCES Christian Wawersich, Michael Stilkerich, Wolfgang Schr¨oder-Preikschat University of Erlangen-Nuremberg Distributed Systems and Operating Systems Erlangen, Germany E-Mail: [email protected], [email protected], [email protected] Abstract: The automotive industry has recent ambitions to integrate multiple applications from different micro controllers on a single, more powerful micro controller. The outcome of this integration process is the loss of the physical isolation and a more complex monolithic software. Memory protection mechanisms need to be provided that allow for a safe co-existence of heterogeneous software from different vendors on the same hardware, in order to prevent the spreading of an error to the other applications on the controller and leaving an unclear responsi- bility situation. With our prototype system KESO, we present a Java-based solution for ro- bust and safe embedded real-time systems that does not require any hardware protection mechanisms. Based on an OSEK/VDX operating system, we offer a familiar system creation process to developers of embedded software and also provide the key benefits of Java to the embedded world. To the best of our knowledge, we present the first Multi-JVM for OSEK/VDX operating systems. We report on our experiences in integrating Java and an em- bedded operating system with focus on the footprint and the real-time capabili- ties of the system. Keywords: Java, Embedded Real-Time Systems, Automotive, Isolation, KESO 1. INTRODUCTION Modern cars contain a multitude of micro controllers for a wide area of tasks, ranging from convenience features such as the supervision of the car’s audio system to safety relevant functions such as assisting the braking system of the car. -
Java in Embedded Linux Systems
Java in Embedded Linux Systems Java in Embedded Linux Systems Thomas Petazzoni / Michael Opdenacker Free Electrons http://free-electrons.com/ Created with OpenOffice.org 2.x Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 1 Rights to copy Attribution ± ShareAlike 2.5 © Copyright 2004-2008 You are free Free Electrons to copy, distribute, display, and perform the work [email protected] to make derivative works to make commercial use of the work Document sources, updates and translations: Under the following conditions http://free-electrons.com/articles/java Attribution. You must give the original author credit. Corrections, suggestions, contributions and Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license translations are welcome! identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 2 Best viewed with... This document is best viewed with a recent PDF reader or with OpenOffice.org itself! Take advantage of internal -
Secure Control Applications in Smart Homes and Buildings
Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Secure Control Applications in Smart Homes and Buildings DISSERTATION submitted in partial fulfillment of the requirements for the degree of Doktor der Technischen Wissenschaften by Mag. Dipl.-Ing. Friedrich Praus Registration Number 0025854 to the Faculty of Informatics at the Vienna University of Technology Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner The dissertation has been reviewed by: Ao.Univ.Prof. Dipl.-Ing. Prof. Dr. Peter Palensky Dr.techn. Wolfgang Kastner Vienna, 1st October, 2015 Mag. Dipl.-Ing. Friedrich Praus Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Mag. Dipl.-Ing. Friedrich Praus Hallergasse 11/29, A-1110 Wien Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 1. Oktober 2015 Friedrich Praus v Kurzfassung Die zunehmende Integration von heterogenen Gebäudeautomationssystemen ermöglicht gesteigerten Komfort, Energieeffizienz, verbessertes Gebäudemanagement, Nachhaltig- keit sowie erweiterte Anwendungsgebiete, wie beispielsweise “Active Assisted Living” Szenarien. Diese Smart Homes und Gebäude sind heutzutage als dezentrale Systeme rea- lisiert, in denen eingebettete Geräte Prozessdaten über ein Netzwerk austauschen. -
Effective Inline-Threaded Interpretation of Java Bytecode
Effective Inline-Threaded Interpretation of Java Bytecode Using Preparation Sequences Etienne Gagnon1 and Laurie Hendren2 1 Sable Research Group Universit´eduQu´ebec `a Montr´eal, [email protected] 2 McGill University Montreal, Canada, [email protected] Abstract. Inline-threaded interpretation is a recent technique that im- proves performance by eliminating dispatch overhead within basic blocks for interpreters written in C [11]. The dynamic class loading, lazy class initialization, and multi-threading features of Java reduce the effective- ness of a straight-forward implementation of this technique within Java interpreters. In this paper, we introduce preparation sequences, a new technique that solves the particular challenge of effectively inline-threa- ding Java. We have implemented our technique in the SableVM Java virtual machine, and our experimental results show that using our tech- nique, inline-threaded interpretation of Java, on a set of benchmarks, achieves a speedup ranging from 1.20 to 2.41 over switch-based inter- pretation, and a speedup ranging from 1.15 to 2.14 over direct-threaded interpretation. 1 Introduction One of the main advantages of interpreters written in high-level languages is their simplicity and portability, when compared to static and dynamic compiler-based systems. One of their main drawbacks is poor performance, due to a high cost for dispatching interpreted instructions. In [11], Piumarta and Riccardi introduced a technique called inlined-threading which reduces this overhead by dynamically inlining instruction sequences within basic blocks, leaving a single instruction dispatch at the end of each sequence. To our knowledge, inlined-threading has not been applied to Java interpreters before. -
Android Cours 1 : Introduction `Aandroid / Android Studio
Android Cours 1 : Introduction `aAndroid / Android Studio Damien MASSON [email protected] http://www.esiee.fr/~massond 21 f´evrier2017 R´ef´erences https://developer.android.com (Incontournable !) https://openclassrooms.com/courses/ creez-des-applications-pour-android/ Un tutoriel en fran¸caisassez complet et plut^ot`ajour... 2/52 Qu'est-ce qu'Android ? PME am´ericaine,Android Incorporated, cr´e´eeen 2003, rachet´eepar Google en 2005 OS lanc´een 2007 En 2015, Android est le syst`emed'exploitation mobile le plus utilis´edans le monde (>80%) 3/52 Qu'est-ce qu'Android ? Cinq couches distinctes : 1 le noyau Linux avec les pilotes ; 2 des biblioth`equeslogicielles telles que WebKit/Blink, OpenGL ES, SQLite ou FreeType ; 3 un environnement d'ex´ecutionet des biblioth`equespermettant d'ex´ecuterdes programmes pr´evuspour la plate-forme Java ; 4 un framework { kit de d´eveloppement d'applications ; 4/52 Android et la plateforme Java Jusqu'`asa version 4.4, Android comporte une machine virtuelle nomm´eeDalvik Le bytecode de Dalvik est diff´erentde celui de la machine virtuelle Java de Oracle (JVM) le processus de construction d'une application est diff´erent Code Java (.java) ! bytecode Java (.class/.jar) ! bytecode Dalvik (.dex) ! interpr´et´e L'ensemble de la biblioth`equestandard d'Android ressemble `a J2SE (Java Standard Edition) de la plateforme Java. La principale diff´erenceest que les biblioth`equesd'interface graphique AWT et Swing sont remplac´eespar des biblioth`equesd'Android. 5/52 Android Runtime (ART) A` partir de la version 5.0 (2014), l'environnement d'ex´ecution ART (Android RunTime) remplace la machine virtuelle Dalvik. -
Jamaicavm 8.1 — User Manual
JamaicaVM 8.1 — User Manual Java Technology for Critical Embedded Systems aicas GmbH 2 JamaicaVM 8.1 — User Manual: Java Technology for Critical Embedded Systems JamaicaVM 8.1, Release 1. Published May 31, 2017. c 2001–2017 aicas GmbH, Karlsruhe. All rights reserved. No licenses, expressed or implied, are granted with respect to any of the technology described in this publication. aicas GmbH retains all intellectual property rights associated with the technology described in this publication. This publication is intended to assist application developers to develop applications only for the Jamaica Virtual Machine. Every effort has been made to ensure that the information in this publication is accurate. aicas GmbH is not responsible for printing or clerical errors. Although the information herein is provided with good faith, the supplier gives neither warranty nor guarantee that the information is correct or that the results described are obtainable under end-user conditions. aicas GmbH phone +49 721 663 968-0 Emmy-Noether-Straße 9 fax +49 721 663 968-99 76131 Karlsruhe email [email protected] Germany web http://www.aicas.com aicas incorporated phone +1 203 359 5705 6 Landmark Square, Suite 400 Stamford CT 06901 email [email protected] USA web http://www.aicas.com aicas GmbH phone +33 1 4997 1762 9 Allee de l’Arche fax +33 1 4997 1700 92671 Paris La Defense email [email protected] France web http://www.aicas.com This product includes software developed by IAIK of Graz University of Technology. This software is based in part on the work of the Independent JPEG Group. -
Compiler Analyses for Improved Return Value Prediction
Compiler Analyses for Improved Return Value Prediction Christopher J.F. Pickett Clark Verbrugge {cpicke,clump}@sable.mcgill.ca School of Computer Science, McGill University Montreal,´ Quebec,´ Canada H3A 2A7 Overview Introduction and Related Work Contributions Framework Parameter Dependence Analysis Return Value Use Analysis Conclusions Future Work CDP04 – 1/48 Introduction and Related Work Speculative method-level parallelism (SMLP) allows for dynamic parallelisation of single-threaded programs speculative threads are forked at callsites suitable for Java virtual machines Perfect return value prediction can double performance of SMLP (Hu et al., 2003) Implemented accurate return value prediction in SableVM, our group’s JVM (Pickett et al., 2004) Current goals: Reduce memory requirements Achieve higher accuracy CDP04 – 2/48 Speculative Method-Level Parallelism // execute foo non-speculatively r = foo (a, b, c); // execute past return point // speculatively in parallel with foo() if (r > 10) { ... } else { ... } CDP04 – 3/48 Impact of Return Value Prediction RVP strategy return value SMLP speedup none arbitrary 1.52 best predicted 1.92 perfect correct 2.76 26% speedup over no RVP with Hu’s best predictor 82% speedup over no RVP with perfect prediction Improved hybrid accuracy is highly desirable S. Hu., R. Bhargava, and L. K. John. The role of return value prediction in exploiting speculative method-level parallelism. Journal of Instruction-Level Parallelism, 5:1–21, Nov. 2003. CDP04 – 4/48 Return Value Prediction in SableVM Implemented all of Hu et al.’s predictors in SableVM Introduced new memoization predictor into hybrid C.J.F. Pickett and C. Verbrugge. Return value prediction in a Java virtual machine. -
Partner Directory Wind River Partner Program
PARTNER DIRECTORY WIND RIVER PARTNER PROGRAM The Internet of Things (IoT), cloud computing, and Network Functions Virtualization are but some of the market forces at play today. These forces impact Wind River® customers in markets ranging from aerospace and defense to consumer, networking to automotive, and industrial to medical. The Wind River® edge-to-cloud portfolio of products is ideally suited to address the emerging needs of IoT, from the secure and managed intelligent devices at the edge to the gateway, into the critical network infrastructure, and up into the cloud. Wind River offers cross-architecture support. We are proud to partner with leading companies across various industries to help our mutual customers ease integration challenges; shorten development times; and provide greater functionality to their devices, systems, and networks for building IoT. With more than 200 members and still growing, Wind River has one of the embedded software industry’s largest ecosystems to complement its comprehensive portfolio. Please use this guide as a resource to identify companies that can help with your development across markets. For updates, browse our online Partner Directory. 2 | Partner Program Guide MARKET FOCUS For an alphabetical listing of all members of the *Clavister ..................................................37 Wind River Partner Program, please see the Cloudera ...................................................37 Partner Index on page 139. *Dell ..........................................................45 *EnterpriseWeb -
GNU Classpath
GNU Classpath Core Classes for a Diversity of Java Virtual Machines February 2004 ■ Sascha Brawer [email protected] http://www.dandelis.ch/people/brawer/ ■ Mark Wielaard [email protected] http://www.klomp.org/mark/ Overview ■ Overview – Motivation – Anatomy of a Java-like system – Documentation, Quality assurance, Releases ■ Demo ■ Details – Current state – VMs using GNU Classpath ■ How you can help 2 Motivation ■ Currently, most free software is written in C The Good The Bad The Ugly Close to hardware Easy to make bugs Libraries not Fast execution, even Lacks “modern” well integrated with bad compilers language concepts Difficult to learn Large code base, (“modern” = 1980’ies) many libraries Hard to write Ubiquitous portable code 3 Motivation ■ Java is a good foundation for many projects – Type-safety ● Avoids many typical bugs, crashes, security problems ● More opportunities for optimizing compilers – Modular, object-oriented, concurrent, dynamic – Easier to write structured, portable code – Very rich library, reasonably well designed (mostly) – Large developer base (“COBOL of the 1990’ies”) ● There exist lots of other good (even better?) languages: Oberon, Eiffel, O’Caml, Haskell, Erlang, TOM, Cedar, ... ● But: They have not many free applications/libraries 4 Motivation ■ But: Java does not solve every problem – Over-hyped as a solution to everything – Bad reputation for wasting resources (CPU, RAM) ● It is easy to write inefficient programs ● Early implementations were very slow ● Type-safety and memory management have their cost – Often over-estimated: Array bounds checking (→ no buffer overflows) costs ~2% execution time, avoids ~50% security-related bugs – Syntax similar to C++ → not very easy to learn 5 Motivation ■ Java is a compromise Why GNU Will Be – Not necessarily ideal, Compatible with UNIX but reasonable Unix is not my ideal system, but it is not too bad. -
Actor-Oriented Programming for Resource Constrained Multiprocessor Networks on Chip
Actor-Oriented Programming for Resource Constrained Multiprocessor Networks on Chip Gary J. Plumbridge PhD University of York Computer Science August 2015 for Ellie Abstract Multiprocessor Networks on Chip (MPNoCs) are an attractive architecture for inte- grated circuits as they can benefit from the improved performance of ever smaller tran- sistors but are not severely constrained by the poor performance of global on-chip wires. As the number of processors increases it becomes ever more expensive to provide co- herent shared memory but this is a foundational assumption of thread-level parallelism. Threaded models of concurrency cannot efficiently address architectures where shared memory is not coherent or does not exist. In this thesis an extended actor oriented programming model is proposed to en- able the design of complex and general purpose software for highly parallel and de- centralised multiprocessor architectures. This model requires the encapsulation of an execution context and state into isolated Machines which may only initiate communica- tion with one another via explicitly named channels. An emphasis on message passing and strong isolation of computation encourages application structures that are congru- ent with the nature of non-shared memory multiprocessors, and the model also avoids creating dependences on specific hardware topologies. A realisation of the model called Machine Java is presented to demonstrate the ap- plicability of the model to a general purpose programming language. Applications designed with this framework are shown to be capable of scaling to large numbers of processors and remain independent of the hardware targets. Through the use of an efficient compilation technique, Machine Java is demonstrated to be portable across sev- eral architectures and viable even in the highly constrained context of an FPGA hosted MPNoC. -
Smart Dynamic Software Components Enabling Decision Support in Machine-To-Machine Networks
IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013 ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 www.IJCSI.org 540 Smart dynamic software components enabling decision support in Machine-to-machine networks Alexander Dannies1*, Javier Palafox-Albarrán1, Walter Lang1 and Reiner Jedermann1 1 Institute for Microsensors, -actuators and -systems, University of Bremen Bremen, Bremen, Germany technologies more ubiquitous, devices have to collect Abstract information from a high number of devices distributed in The future Internet of Things will be extended by machine-to- the environment. For such a detailed supervision CRN are machine communication technologies in order to include sensor rather disadvantageous for the following reasons: information. The overwhelming amount of data will require autonomous decision making processes which are directly Communication costs have to be kept as low as executed at the location where data is generated or measured. An possible. intelligent sensor system needs to be able to adapt to new parameters in its surrounding unknown at the time of deployment. Network protocols have to be optimized for In our paper we show that Java enables software updates on transmission of small packets of sensor data mobile devices and also that it is possible to run algorithms consuming as little energy as possible instead of required for decision making processes on wireless sensor enabling global communication. platforms based on Java. Keywords: Machine-to-Machine communication, Internet of In many applications, such as the monitoring Things, autonomous logistics, Java, dynamic updates, OSGi. inside large buildings or rural regions, the supervised area will not be fully covered by the CRN of an external operator. -
Interrupt Handlers in Java
Downloaded from orbit.dtu.dk on: Oct 06, 2021 Interrupt Handlers in Java Korsholm, Stephan; Schoeberl, Martin; Ravn, Anders P. Published in: Proceedings of the 11th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2008) Link to article, DOI: 10.1109/ISORC.2008.68 Publication date: 2008 Document Version Early version, also known as pre-print Link back to DTU Orbit Citation (APA): Korsholm, S., Schoeberl, M., & Ravn, A. P. (2008). Interrupt Handlers in Java. In Proceedings of the 11th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2008) (pp. 453-457) https://doi.org/10.1109/ISORC.2008.68 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Interrupt Handlers in Java Stephan Korsholm Martin Schoeberl Department of Computer Science Institute of Computer Engineering Aalborg University DK-9220 Aalborg Vienna University of Technology, Austria [email protected] [email protected] Anders P.