Past, Present, and Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soviet Steps Toward Permanent Human Presence in Space
SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations. -
Materials for Liquid Propulsion Systems
https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost. -
Global Exploration Roadmap
The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System. -
Trade Studies Towards an Australian Indigenous Space Launch System
TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system. -
From the Earth to Outer Space
From the Earth to Outer Space Many years ago, people here on Earth decided that they wanted to go into outer space. This is something people had imagined for a very long time, in books and movies and stories grandparents told to their grandchildren. However, in the 1950s, people decided they really wanted to do it. There was just one problem: how would they get there? One of the earliest movies about flying to the moon was made by Georges Méliès and released in 1902. It was called A Trip to the Moon. In this movie, the moon was made up of a man’s face, covered in cream, and a whole tribe of angry natives lived there. That part was not very realistic. However, the spaceship didn’t seem too far-fetched: it was a small capsule, shaped like a bullet, that the astronauts loaded into a giant cannon and aimed at the moon. This movie was based on a book that came out many years earlier by an author named Jules Verne. One of the fans of the book was a Russian man, Konstantin Tsiolkovsky. The book made him think. Could you really shoot people out of a cannon and have them get safely to the moon? He decided you couldn’t, but it got him thinking of other ways you could get people to the moon. He spent his life considering this problem and came up with many solutions. © 2013 ReadWorks®, Inc. All rights reserved. Some of Tsiolkovsky’s solutions gave scientists in America and Russia (where Tsiolkovsky lived) ideas when they began to think about space travel. -
A Pictorial History of Rockets
he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
Evolved Expendable Launch Operations at Cape Canaveral, 2002-2009
EVOLVED EXPENDABLE LAUNCH OPERATIONS AT CAPE CANAVERAL 2002 – 2009 by Mark C. Cleary 45th SPACE WING History Office PREFACE This study addresses ATLAS V and DELTA IV Evolved Expendable Launch Vehicle (EELV) operations at Cape Canaveral, Florida. It features all the EELV missions launched from the Cape through the end of Calendar Year (CY) 2009. In addition, the first chapter provides an overview of the EELV effort in the 1990s, summaries of EELV contracts and requests for facilities at Cape Canaveral, deactivation and/or reconstruction of launch complexes 37 and 41 to support EELV operations, typical EELV flight profiles, and military supervision of EELV space operations. The lion’s share of this work highlights EELV launch campaigns and the outcome of each flight through the end of 2009. To avoid confusion, ATLAS V missions are presented in Chapter II, and DELTA IV missions appear in Chapter III. Furthermore, missions are placed in three categories within each chapter: 1) commercial, 2) civilian agency, and 3) military space operations. All EELV customers employ commercial launch contractors to put their respective payloads into orbit. Consequently, the type of agency sponsoring a payload (the Air Force, NASA, NOAA or a commercial satellite company) determines where its mission summary is placed. Range officials mark all launch times in Greenwich Mean Time, as indicated by a “Z” at various points in the narrative. Unfortunately, the convention creates a one-day discrepancy between the local date reported by the media and the “Z” time’s date whenever the launch occurs late at night, but before midnight. (This proved true for seven of the military ATLAS V and DELTA IV missions presented here.) In any event, competent authorities have reviewed all the material presented in this study, and it is releasable to the general public. -
The Russian Popular Culture of Space Exploration
Kul’tura Kosmosa: The Russian Popular Culture of Space Exploration Andrew Thomas DISSERTATION.COM Boca Raton Kul’tura Kosmosa: The Russian Popular Culture of Space Exploration Copyright © 2010 Andrew Thomas All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher. Dissertation.com Boca Raton, Florida USA • 2011 ISBN-10: 1-59942-379-0 ISBN-13: 978-1-59942-379-1 Kul’tura Kosmosa –the Russian Popular Culture of Space Exploration Abstract This thesis argues that there is a popular culture of space exploration characteristic of a wider Russia; its roots lie in pagan times and it grew through Orthodox Christianity and Soviet Communism to the twenty-first century, where it is actively promoted by Russia and neighbouring nations. The key influences stem from Nikolai Fedorov, Kontsantin Tsiolkovsky, Friedrich Tsander and Yuri Gagarin. The narrative of the twentieth century Soviet space programme is considered from this perspective and the cultural importance of Tsiolkovsky to this programme is acknowledged. This is an alternative perspective to the commonly-held Western view of the “Space Race”. The manipulation of imagery and ritual of space exploration by Russia and other neighbouring nations is examined, and the effect on the “collective remembering” in modern Russia of key events in Russian space exploration is tested. 2 Kul’tura Kosmosa –the Russian Popular Culture of Space Exploration Acknowledgements Many people helped and encouraged me in this project and I would like to thank all of them. -
+ Part 17: Acronyms and Abbreviations (265 Kb PDF)
17. Acronyms and Abbreviations °C . Degrees.Celsius °F. Degrees.Fahrenheit °R . Degrees.Rankine 24/7. 24.Hours/day,.7.days/week 2–D. Two-Dimensional 3C. Command,.Control,.and.Checkout 3–D. Three-Dimensional 3–DOF . Three-Degrees.of.Freedom 6-DOF. Six-Degrees.of.Freedom A&E. Architectural.and.Engineering ACEIT. Automated.Cost-Estimating.Integrated.Tools ACES . Acceptance.and.Checkout.Evaluation.System ACP. Analytical.Consistency.Plan ACRN. Assured.Crew.Return.Vehicle ACRV. Assured.Crew.Return.Vehicle AD. Analog.to.Digital ADBS. Advanced.Docking.Berthing.System ADRA. Atlantic.Downrange.Recovery.Area AEDC. Arnold.Engineering.Development.Center AEG . Apollo.Entry.Guidance AETB. Alumina.Enhanced.Thermal.Barrier AFB .. .. .. .. .. .. .. Air.Force.Base AFE. Aero-assist.Flight.Experiment AFPG. Apollo.Final.Phase.Guidance AFRSI. Advanced.Flexible.Reusable.Surface.Insulation AFV . Anti-Flood.Valve AIAA . American.Institute.of.Aeronautics.and.Astronautics AL. Aluminum ALARA . As.Low.As.Reasonably.Achievable 17. Acronyms and Abbreviations 731 AL-Li . Aluminum-Lithium ALS. Advanced.Launch.System ALTV. Approach.and.Landing.Test.Vehicle AMS. Alpha.Magnetic.Spectrometer AMSAA. Army.Material.System.Analysis.Activity AOA . Analysis.of.Alternatives AOD. Aircraft.Operations.Division APAS . Androgynous.Peripheral.Attachment.System APS. Auxiliary.Propulsion.System APU . Auxiliary.Power.Unit APU . Auxiliary.Propulsion.Unit AR&D. Automated.Rendezvous.and.Docking. ARC . Ames.Research.Center ARF . Assembly/Remanufacturing.Facility ASE. Airborne.Support.Equipment ASI . Augmented.Space.Igniter ASTWG . Advanced.Spaceport.Technology.Working.Group ASTP. Advanced.Space.Transportation.Program AT. Alternate.Turbopump ATCO. Ambient.Temperature.Catalytic.Oxidation ATCS . Active.Thermal.Control.System ATO . Abort-To-Orbit ATP. Authority.to.Proceed ATS. Access.to.Space ATV . Automated.Transfer.Vehicles ATV . -
On the Legality of Mars Colonisation
Joshua Fitzmaurice* and Stacey Henderson** ON THE LEGALITY OF MARS COLONISATION ‘Humanity will not remain on the earth forever, but in pursuit of light and space it will at first timidly penetrate beyond the limits of the atmosphere, and then conquer all the space around the sun.’1 ABSTRACT Recent technological advancements made by governmental agencies and private industry have raised hopes for the future of human space flight beyond the Moon. These advancements are increasing the feasibil- ity of endeavours to establish a permanent human habitat on Mars, as a safeguard for our species, for scientific endeavours, and for commercial purposes. This article analyses some of the legal issues associated with Mars colonisation, focusing on the lawfulness of such a venture and the legal status of colonists. I INTRODUCTION ecent technological advancements made by governmental agencies and private industry have raised hopes for the future of human space flight beyond Rthe Moon. The United States’ National Aeronautics and Space Administration (‘NASA’) is developing a new generation of launch and crew systems that will enable * Surveillance of Space Capability Officer, Royal Australian Air Force; MSc (Physics, Space Operations) RMC Canada. Email: [email protected]. The views expressed in this article are personal views and should not be interpreted as an official position. ** Lecturer, Adelaide Law School, The University of Adelaide; PhD (Adel). Email: [email protected]. 1 Letter from Konstantin Tsiolkovsky to Boris Vorobiev, 12 August 1911. See, eg, Rex Hall and David Shayler, The Rocket Men: Vostok & Voskhod: The First Soviet Manned Space-flights (Springer, 2001). -
Pioneers of Spaceflight E S S S O N 9 P L - a 1 S N 2 T E N P
ROCKETROCKET LABLABTM T G w o R C Science A l a s D s L E Pioneers of Spaceflight e s S s o n 9 P l - a 1 S n 2 T E N P (First class session: 20-25 minutes) A Standard G LEARN T I History and Nature of Science 1.Objectives O • Students will be able to identify the pioneers of spaceflight N Standard 13 and their contributions to science and technology. A Understands the scientific • Students will experience what it is like to be a pioneer of L enterprise spaceflight while building and launching an Estes model rocket. S T A Benchmark 1 Materials N Knows that, throughout histo- 1. Generic E2X®, Alpha III® or UP Aerospace™ SpaceLoft ™ D ry, diverse cultures have Rocket Lab Pack™ (12 pack) - 2 or more A developed scientific ideas and 2. Rocket Engine Lab Pack™ (24 pack) - 1 or more R solved human problems 3. Electron Beam® Launch Controller - 1 or more D through technology. 4. Porta-Pad® II Launch Pad - 1 or more 5. Paper, pencil, white or carpenter’s glue or plastic cement, Benchmark 2 scissors, modeling knife, ruler and masking tape for each Understands that individuals student and teams contribute to sci- 6. History of Rockets PowerPoint ence and engineering at dif- ferent levels of complexity. Time Two class sessions Background History of Rockets (Slide 1) Where It All Began (Slide 2) The origins of modern rocketry can be traced back to Greece and China. One of the first devices to utilize the principles of rocket flight was a wooden bird.