Annual Review 2018 | 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Royal Statistical Scandal
Royal Statistical Scandal False and misleading claims by the Royal Statistical Society Including on human poverty and UN global goals Documentary evidence Matt Berkley Draft 27 June 2019 1 "The Code also requires us to be competent. ... We must also know our limits and not go beyond what we know.... John Pullinger RSS President" https://www.statslife.org.uk/news/3338-rss-publishes-revised-code-of- conduct "If the Royal Statistical Society cannot provide reasonable evidence on inflation faced by poor people, changing needs, assets or debts from 2008 to 2018, I propose that it retract the honour and that the President makes a statement while he holds office." Matt Berkley 27 Dec 2018 2 "a recent World Bank study showed that nearly half of low-and middle- income countries had insufficient data to monitor poverty rates (2002- 2011)." Royal Statistical Society news item 2015 1 "Max Roser from Oxford points out that newspapers could have legitimately run the headline ' Number of people in extreme poverty fell by 137,000 since yesterday' every single day for the past 25 years... Careless statistical reporting could cost lives." President of the Royal Statistical Society Lecture to the Independent Press Standards Organisation April 2018 2 1 https://www.statslife.org.uk/news/2495-global-partnership-for- sustainable-development-data-launches-at-un-summit 2 https://www.statslife.org.uk/features/3790-risk-statistics-and-the-media 3 "Mistaken or malicious misinformation can change your world... When the government is wrong about you it will hurt you too but you may never know how. -
Mothers in Science
The aim of this book is to illustrate, graphically, that it is perfectly possible to combine a successful and fulfilling career in research science with motherhood, and that there are no rules about how to do this. On each page you will find a timeline showing on one side, the career path of a research group leader in academic science, and on the other side, important events in her family life. Each contributor has also provided a brief text about their research and about how they have combined their career and family commitments. This project was funded by a Rosalind Franklin Award from the Royal Society 1 Foreword It is well known that women are under-represented in careers in These rules are part of a much wider mythology among scientists of science. In academia, considerable attention has been focused on the both genders at the PhD and post-doctoral stages in their careers. paucity of women at lecturer level, and the even more lamentable The myths bubble up from the combination of two aspects of the state of affairs at more senior levels. The academic career path has academic science environment. First, a quick look at the numbers a long apprenticeship. Typically there is an undergraduate degree, immediately shows that there are far fewer lectureship positions followed by a PhD, then some post-doctoral research contracts and than qualified candidates to fill them. Second, the mentors of early research fellowships, and then finally a more stable lectureship or career researchers are academic scientists who have successfully permanent research leader position, with promotion on up the made the transition to lectureships and beyond. -
Pila, O-Minimality and Diophantine Geometry
O-minimality and Diophantine geometry Jonathan Pila Abstract. This lecture is concerned with some recent applications of mathematical logic to Diophantine geometry. More precisely it concerns applications of o-minimality, a branch of model theory which treats tame structures in real geometry, to certain finiteness problems descending from the classical conjecture of Mordell. Mathematics Subject Classification (2010). Primary 03C64, 11G18. Keywords. O-minimal structure, Andr´e-Oortconjecture, Zilber-Pink conjecture. 1. Introduction This is a somewhat expanded version of my lecture at ICM 2014 in Seoul. It surveys some recent interactions between model theory and Diophantine geometry. The Diophantine problems to be considered are of a type descending from the classical Mordell conjecture (theorem of Faltings). I will describe the passage from Mordell's conjecture to the far-reaching Zilber-Pink conjecture, which is very much open and the subject of lively study by a variety of methods on several fronts. The model theory is \o-minimality", which studies tame structures in real geometry, and offers powerful tools applicable to certain “definable” sets. In combination with an elementary analytic method for \counting rational points" it leads to a general result about the height distribution of rational points on definable sets. This result can be successfully applied to Zilber-Pink problems in the presence of certain functional transcendence and arithmetic ingredients which are known in many cases but seemingly quite difficult in general. Both the methods and problems have connections with transcendental number theory. My further objective is to explain these connections and to bring out the pervasive presence of Schanuel's conjecture. -
Twenty Female Mathematicians Hollis Williams
Twenty Female Mathematicians Hollis Williams Acknowledgements The author would like to thank Alba Carballo González for support and encouragement. 1 Table of Contents Sofia Kovalevskaya ................................................................................................................................. 4 Emmy Noether ..................................................................................................................................... 16 Mary Cartwright ................................................................................................................................... 26 Julia Robinson ....................................................................................................................................... 36 Olga Ladyzhenskaya ............................................................................................................................. 46 Yvonne Choquet-Bruhat ....................................................................................................................... 56 Olga Oleinik .......................................................................................................................................... 67 Charlotte Fischer .................................................................................................................................. 77 Karen Uhlenbeck .................................................................................................................................. 87 Krystyna Kuperberg ............................................................................................................................. -
Condenser Capacity and Hyperbolic Perimeter
CONDENSER CAPACITY AND HYPERBOLIC PERIMETER MOHAMED M. S. NASSER, OONA RAINIO, AND MATTI VUORINEN Abstract. We apply domain functionals to study the conformal capacity of condensers (G; E) where G is a simply connected domain in the complex plane and E is a compact subset of G. Due to conformal invariance, our main tools are the hyperbolic geometry and functionals such as the hyperbolic perimeter of E. Novel computational algorithms based on implementations of the fast multipole method are combined with analytic techniques. Computational experiments are used throughout to, for instance, demonstrate sharpness of established inequalities. In the case of model problems with known analytic solutions, very high precision of computation is observed. 1. Introduction A condenser is a pair (G; E), where G ⊂ Rn is a domain and E is a compact non-empty subset of G. The conformal capacity of this condenser is defined as [14, 17, 20] Z (1.1) cap(G; E) = inf jrujndm; u2A G 1 where A is the class of C0 (G) functions u : G ! [0; 1) with u(x) ≥ 1 for all x 2 E and dm is the n-dimensional Lebesgue measure. The conformal capacity of a condenser is one of the key notions in potential theory of elliptic partial differential equations [20, 29] and it has numerous applications to geometric function theory, both in the plane and in higher dimensions, [10, 14, 15, 17]. The isoperimetric problem is to determine a plane figure of the largest possible area whose boundary has a specified length, or, perimeter. Constrained extremal problems of this type, where the constraints involve geometric or physical quantities, have been studied in several thousands of papers, see e.g. -
LMS – EPSRC Durham Symposium
LMS – EPSRC Durham Symposium Anthony Byrne Grants and Membership Administrator 12th July 2016, Durham The work of the LMS for mathematics The charitable aims of the Society: Funding the advancement of mathematical knowledge Encouraging mathematical research and collaboration ’, George Legendre Celebrating mathematical 30 Pieces achievements Publishing and disseminating mathematical knowledge Advancing and promoting mathematics The attendees of the Young Researchers in Mathematics Conference 2015, held at Oxford Historical Moments of the London Mathematical Society 1865 Foundation of LMS at University College London George Campbell De Morgan organised the first meeting, and his father, Augustus De Morgan became the 1st President 1865 First minute book list of the 27 original members 1866 LMS moves to Old Burlington House, Piccadilly J.J. Sylvester, 2nd President of the Society. 1866 Julius Plûcker Thomas Hirst Plûcker Collection of boxwood models of quartic surfaces given to Thomas Archer Hirst, Vice- President of LMS, and donated to the Society 1870 Move to Asiatic Society, 22 Albemarle Street William Spottiswoode, President 1874 Donation of £1,000 from John William Strutt (Lord Rayleigh) Generous donation enabled the Society to publish volumes of the Proceedings of the London Mathematical Society. J.W. Strutt (Lord Rayleigh), LMS President 1876-78 1881 First women members Charlotte Angas Scott and Christine Ladd 1884 First De Morgan medal awarded to Arthur Cayley 1885 Sophie Bryant First woman to have a paper published in LMS Proceedings 1916 Return to Burlington House the home of LMS until 1998 1937 ACE ’s Automatic Turing LMS Proceedings, 1937 Computing Engine, published Alan Turing’s first paper 1950 On Computable Numbers 1947 Death of G.H. -
Algebra & Number Theory Vol. 7 (2013)
Algebra & Number Theory Volume 7 2013 No. 3 msp Algebra & Number Theory msp.org/ant EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Raman Parimala Emory University, USA John H. Coates University of Cambridge, UK Jonathan Pila University of Oxford, UK J-L. Colliot-Thélène CNRS, Université Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hélène Esnault Freie Universität Berlin, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universität, Germany Joseph H. Silverman Brown University, USA Edward Frenkel University of California, Berkeley, USA Michael Singer North Carolina State University, USA Andrew Granville Université de Montréal, Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Virginia, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale University, USA Ravi Vakil Stanford University, -
Harmonic and Complex Analysis and Its Applications
Trends in Mathematics Alexander Vasil’ev Editor Harmonic and Complex Analysis and its Applications Trends in Mathematics Trends in Mathematics is a series devoted to the publication of volumes arising from conferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the community as rapidly as possible without compromise to quality and to archive these for reference. Proposals for volumes can be submitted using the Online Book Project Submission Form at our website www.birkhauser-science.com. Material submitted for publication must be screened and prepared as follows: All contributions should undergo a reviewing process similar to that carried out by journals and be checked for correct use of language which, as a rule, is English. Articles without proofs, or which do not contain any significantly new results, should be rejected. High quality survey papers, however, are welcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for direct reproduction. Any version of TEX is acceptable, but the entire collection of files must be in one particular dialect of TEX and unified according to simple instructions available from Birkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essential that the final version of the entire material be submitted no later than one year after the conference. For further volumes: http://www.springer.com/series/4961 Harmonic and Complex Analysis and its Applications Alexander Vasil’ev Editor Editor Alexander Vasil’ev Department of Mathematics University of Bergen Bergen Norway ISBN 978-3-319-01805-8 ISBN 978-3-319-01806-5 (eBook) DOI 10.1007/978-3-319-01806-5 Springer Cham Heidelberg New York Dordrecht London Mathematics Subject Classification (2010): 13P15, 17B68, 17B80, 30C35, 30E05, 31A05, 31B05, 42C40, 46E15, 70H06, 76D27, 81R10 c Springer International Publishing Switzerland 2014 This work is subject to copyright. -
Complex Numbers and Colors
Complex Numbers and Colors For the sixth year, “Complex Beauties” provides you with a look into the wonderful world of complex functions and the life and work of mathematicians who contributed to our understanding of this field. As always, we intend to reach a diverse audience: While most explanations require some mathemati- cal background on the part of the reader, we hope non-mathematicians will find our “phase portraits” exciting and will catch a glimpse of the richness and beauty of complex functions. We would particularly like to thank our guest authors: Jonathan Borwein and Armin Straub wrote on random walks and corresponding moment functions and Jorn¨ Steuding contributed two articles, one on polygamma functions and the second on almost periodic functions. The suggestion to present a Belyi function and the possibility for the numerical calculations came from Donald Marshall; the November title page would not have been possible without Hrothgar’s numerical solution of the Bla- sius equation. The construction of the phase portraits is based on the interpretation of complex numbers z as points in the Gaussian plane. The horizontal coordinate x of the point representing z is called the real part of z (Re z) and the vertical coordinate y of the point representing z is called the imaginary part of z (Im z); we write z = x + iy. Alternatively, the point representing z can also be given by its distance from the origin (jzj, the modulus of z) and an angle (arg z, the argument of z). The phase portrait of a complex function f (appearing in the picture on the left) arises when all points z of the domain of f are colored according to the argument (or “phase”) of the value w = f (z). -
Nevanlinna Theory of the Askey-Wilson Divided Difference
NEVANLINNA THEORY OF THE ASKEY-WILSON DIVIDED DIFFERENCE OPERATOR YIK-MAN CHIANG AND SHAO-JI FENG Abstract. This paper establishes a version of Nevanlinna theory based on Askey-Wilson divided difference operator for meromorphic functions of finite logarithmic order in the complex plane C. A second main theorem that we have derived allows us to define an Askey-Wilson type Nevanlinna deficiency which gives a new interpretation that one should regard many important infinite products arising from the study of basic hypergeometric series as zero/pole- scarce. That is, their zeros/poles are indeed deficient in the sense of difference Nevanlinna theory. A natural consequence is a version of Askey-Wilosn type Picard theorem. We also give an alternative and self-contained characterisation of the kernel functions of the Askey-Wilson operator. In addition we have established a version of unicity theorem in the sense of Askey-Wilson. This paper concludes with an application to difference equations generalising the Askey-Wilson second-order divided difference equation. Contents 1. Introduction 2 2. Askey-Wilson operator and Nevanlinna characteristic 6 3. Askey-Wilson type Nevanlinna theory – Part I: Preliminaries 8 4. Logarithmic difference estimates and proofs of Theorem 3.2 and 3.1 10 5. Askey-Wilson type counting functions and proof of Theorem 3.3 22 6. ProofoftheSecondMaintheorem3.5 25 7. Askey-Wilson type Second Main theorem – Part II: Truncations 27 8. Askey-Wilson-Type Nevanlinna Defect Relation 29 9. Askey-Wilson type Nevanlinna deficient values 31 arXiv:1502.02238v4 [math.CV] 3 Feb 2018 10. The Askey-Wilson kernel and theta functions 33 11. -
Ax-Schanuel and Strong Minimality for the $ J $-Function
AX-SCHANUEL AND STRONG MINIMALITY FOR THE j-FUNCTION VAHAGN ASLANYAN Abstract. Let K := (K;+, ·, D, 0, 1) be a differentially closed field of character- istic 0 with field of constants C. In the first part of the paper we explore the connection between Ax-Schanuel type theorems (predimension inequalities) for a differential equation E(x, y) and the geometry of the fibres Us := {y : E(s,y) ∧ y∈ / C} where s is a non-constant element. We show that certain types of predimension inequalities imply strong minimality and geometric triviality of Us. Moreover, the induced structure on the Cartesian powers of Us is given by special subvarieties. In particular, since the j-function satisfies an Ax-Schanuel inequality of the required form (due to Pila and Tsimerman), applying our results to the j-function we recover a theorem of Freitag and Scanlon stating that the differential equation of j defines a strongly minimal set with trivial geometry. In the second part of the paper we study strongly minimal sets in the j-reducts of differentially closed fields. Let Ej (x, y) be the (two-variable) differential equation of the j-function. We prove a Zilber style classification result for strongly minimal sets in the reduct K := (K;+, ·, Ej ). More precisely, we show that in K all strongly minimal sets are geometrically trivial or non-orthogonal to C. Our proof is based on the Ax-Schanuel theorem and a matching Existential Closedness statement which asserts that systems of equations in terms of Ej have solutions in K unless having a solution contradicts Ax-Schanuel. -
1 Main Panel a 1 Clinical Medicine 2 Public Health, Health Services
Main Panel A 1 Clinical Medicine 2 Public Health, health services and Primary Care 3 Allied Health Professions, Dentistry, Nursing and Pharmacy 4 Psychology, Psychiatry and Neuroscience 5 Biological Services 6 Agriculture, Food and Veterinary Sciences Main Panel B 7 Earth Systems and Environmental Sciences 8 Chemistry 9 Physics 10 Mathematical Sciences 11 Computer Sciences 12 Engineering Main Panel C 13 Architecture, Built Environment and Planning 14 Geography and Environmental Studies 15 Archaeology 16 Economics and Econometrics 17 Business and Management Studies 18 Law 19 Politics and International Studies 20 Social Work and Social Policy 21 Sociology 22 Anthropology and Development Studies 23 Education 24 Sport and Exercise Sciences, Leisure and Tourism Main Panel D 25 Area Studies 26 Modern Languages and Linguistics 27 English Language and Literature 28 History 29 Classics 30 Philosophy 31 Theology and Religious Studies 32 Art and Design: History, Practice and Theory 33 Music, Drama, Dance, performing Arts, Film and Screen Studies 34 Communication, Cultural and Media Studies, Library and Information Management 1 * denotes interdisciplinary member on a main panel, and interdisciplinary adviser on a sub-panel Main Panel A Chair Professor John Iredale University of Bristol Members Professor Doreen Cantrell University of Dundee Professor Peter Clegg University of Liverpool Professor David Crossman Chief Scientist Scottish Government Professor Dame Anna Dominiczak* University of Glasgow Professor Paul Elliott Imperial College London Professor