Classification of the Recent Carnivora
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table 7: Species Changing IUCN Red List Status (2014-2015)
IUCN Red List version 2015.4: Table 7 Last Updated: 19 November 2015 Table 7: Species changing IUCN Red List Status (2014-2015) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2014 (IUCN Red List version 2014.3) and 2015 (IUCN Red List version 2015-4) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered, EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2014) List (2015) change version Category Category MAMMALS Aonyx capensis African Clawless Otter LC NT N 2015-2 Ailurus fulgens Red Panda VU EN N 2015-4 -
Appendix E.14 Spotlight Surveys Report California Flats Solar Project Spotlight Surveys for San Joaquin Kit Fox and American Badger
Appendix E.14 Spotlight Surveys Report California Flats Solar Project Spotlight Surveys for San Joaquin Kit Fox and American Badger Project # 3308 Prepared for: California Flats Solar, LLC 135 Main Street, 6th Floor San Francisco, CA 94105 Prepared by: H. T. Harvey & Associates April 2014 Cal Poly Technology Park, Bldg. 83, Ste. 1B San Luis Obispo, CA 93407 Ph: 805.756.7400 F: 805.756.7441 Executive Summary The California Flats Solar Project (Project) is a 280-megawatt photovoltaic solar power plant proposed for development in southeastern Monterey County, California. When approved, the solar facility and related operations infrastructure will be built on approximately 1037 hectares (2562 acres) (Project site) of the 29,137-hectare (72,000-acre) Jack Ranch, which is a working cattle ranch. The overall development will include improvements to an existing access road and its connection to State Route 41 (access road/Hwy 41 improvement areas). Together, the Project site and access road/Hwy 41 improvement areas constitute the 1058-hectare (2615-acre) Project impact area (PIA), where all direct, Project-related impacts will occur. A biological study area (BSA) was delineated around the PIA, within which most Project-related biological surveys and assessments are being conducted. The Project site is located within a landscape dominated by gently rolling terrain and grasslands, interspersed with several, mostly ephemeral, riparian corridors and drainages. Numerous wildlife species are known to occur in the region, some of which have been identified as candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) and/or U.S. -
First Sighting of the Giant Genet Genetta Victoriae in Rwanda
First sighting of the Giant Genet Genetta victoriae in Rwanda Vladimir DINETS Abstract A large genet photographed in 2005 in Nyungwe National Park, Rwanda, was identified as a Giant GenetGenetta victoriae, previously known with certainty only from the Democratic Republic of Congo and the adjacent part of Uganda and never before photographed in the wild. Keywords: montane rainforest, Nyungwe National Park, spotlighting, Viverridae Première observation de la Genette Géante Genetta victoriae au Rwanda Résumé Une genette de grande taille photographiée en 2005 dans le Parc National de Nyungwe au Rwanda, est identifiée comme représentant la Genette Géante Genetta victoriae ; cette espèce n’était connue que de la République Démocratique du Congo et de la partie limitrophe de l’Ouganda, et n’avait jamais été photographiée dans la nature. Mots clés: forêt ombrophile de montagne, Parc National de Nyungwe, spotlighting, Viverridae Giant Genet Genetta victoriae Thomas, 1901 is an enigmatic car- nivoran species, currently known with certainty only from northern and eastern parts of the Democratic Republic of Congo (DRC), where it inhabits lowland and montane rainforests up to 2,000 m (Van Rompaey et al. 2008). It has been predicted to occur in Rwan- da and Uganda, but there are no confirmed observations or mu- seum specimens from outside DRC (Gaubert et al. 2006), except in Semiliki Forest in Uganda on the border with DRC (Bere 1962). A captive specimen has been photographed by Rahm (1966), but there are no photos obtained in the wild, and no published infor- mation on wild animals, except for observations by Kingdon (1977) in Uganda, which appear questionable (Schreiber et al. -
Educator's Guide
Educator’s Guide the jill and lewis bernard family Hall of north american mammals inside: • Suggestions to Help You come prepared • essential questions for Student Inquiry • Strategies for teaching in the exhibition • map of the Exhibition • online resources for the Classroom • Correlations to science framework • glossary amnh.org/namammals Essential QUESTIONS Who are — and who were — the North as tundra, winters are cold, long, and dark, the growing season American Mammals? is extremely short, and precipitation is low. In contrast, the abundant precipitation and year-round warmth of tropical All mammals on Earth share a common ancestor and and subtropical forests provide optimal growing conditions represent many millions of years of evolution. Most of those that support the greatest diversity of species worldwide. in this hall arose as distinct species in the relatively recent Florida and Mexico contain some subtropical forest. In the past. Their ancestors reached North America at different boreal forest that covers a huge expanse of the continent’s times. Some entered from the north along the Bering land northern latitudes, winters are dry and severe, summers moist bridge, which was intermittently exposed by low sea levels and short, and temperatures between the two range widely. during the Pleistocene (2,588,000 to 11,700 years ago). Desert and scrublands are dry and generally warm through- These migrants included relatives of New World cats (e.g. out the year, with temperatures that may exceed 100°F and dip sabertooth, jaguar), certain rodents, musk ox, at least two by 30 degrees at night. kinds of elephants (e.g. -
56. Otariidae and Phocidae
FAUNA of AUSTRALIA 56. OTARIIDAE AND PHOCIDAE JUDITH E. KING 1 Australian Sea-lion–Neophoca cinerea [G. Ross] Southern Elephant Seal–Mirounga leonina [G. Ross] Ross Seal, with pup–Ommatophoca rossii [J. Libke] Australian Sea-lion–Neophoca cinerea [G. Ross] Weddell Seal–Leptonychotes weddellii [P. Shaughnessy] New Zealand Fur-seal–Arctocephalus forsteri [G. Ross] Crab-eater Seal–Lobodon carcinophagus [P. Shaughnessy] 56. OTARIIDAE AND PHOCIDAE DEFINITION AND GENERAL DESCRIPTION Pinnipeds are aquatic carnivores. They differ from other mammals in their streamlined shape, reduction of pinnae and adaptation of both fore and hind feet to form flippers. In the skull, the orbits are enlarged, the lacrimal bones are absent or indistinct and there are never more than three upper and two lower incisors. The cheek teeth are nearly homodont and some conditions of the ear that are very distinctive (Repenning 1972). Both superfamilies of pinnipeds, Phocoidea and Otarioidea, are represented in Australian waters by a number of species (Table 56.1). The various superfamilies and families may be distinguished by important and/or easily observed characters (Table 56.2). King (1983b) provided more detailed lists and references. These and other differences between the above two groups are not regarded as being of great significance, especially as an undoubted fur seal (Australian Fur-seal Arctocephalus pusillus) is as big as some of the sea lions and has some characters of the skull, teeth and behaviour which are rather more like sea lions (Repenning, Peterson & Hubbs 1971; Warneke & Shaughnessy 1985). The Phocoidea includes the single Family Phocidae – the ‘true seals’, distinguished from the Otariidae by the absence of a pinna and by the position of the hind flippers (Fig. -
Brucella Antibody Seroprevalence in Antarctic Seals (Arctocephalus Gazella, Leptonychotes Weddellii and Mirounga Leonina)
Vol. 105: 175–181, 2013 DISEASES OF AQUATIC ORGANISMS Published September 3 doi: 10.3354/dao02633 Dis Aquat Org Brucella antibody seroprevalence in Antarctic seals (Arctocephalus gazella, Leptonychotes weddellii and Mirounga leonina) Silje-Kristin Jensen1,2,*, Ingebjørg Helena Nymo1, Jaume Forcada3, Ailsa Hall2, Jacques Godfroid1 1Section for Arctic Veterinary Medicine, Norwegian School of Veterinary Science, Stakkevollveien 23, 9010 Tromsø, Norway; member of the Fram Centre - High North Research Centre for Climate and the Environment, 9296 Tromsø, Norway 2Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK 3British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Brucellosis is a worldwide infectious zoonotic disease caused by Gram-negative bac- teria of the genus Brucella, and Brucella infections in marine mammals were first reported in 1994. A serosurvey investigating the presence of anti-Brucella antibodies in 3 Antarctic pinniped spe- cies was undertaken with a protein A/G indirect enzyme-linked immunosorbent assay (iELISA) and the Rose Bengal test (RBT). Serum samples from 33 Weddell seals Leptonychotes weddelli were analysed, and antibodies were detected in 8 individuals (24.2%) with the iELISA and in 21 (65.6%) with the RBT. We tested 48 southern elephant seal Mirounga leonina sera and detected antibodies in 2 animals (4.7%) with both the iELISA and the RBT. None of the 21 Antarctic fur seals Arctocephalus gazella was found positive. This is the first report of anti-Brucella antibodies in southern elephant seals. The potential impact of Brucella infection in pinnipeds in Antarctica is not known, but Brucella spp. -
CHAPTER 1: Introduction 1
University of Pretoria etd, Wilson K A (2006) Status and distribution of cheetah outside formal conservation areas in the Thabazimbi district, Limpopo province by Kelly-Anne Wilson Submitted in partial fulfilment for the requirements for the degree Magister Scientiae in Wildlife Management Centre for Wildlife Management Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria Supervisor: Prof. J. du P. Bothma Co-supervisor: Prof. G. H. Verdoorn February 2006 University of Pretoria etd, Wilson K A (2006) STATUS AND DISTRIBUTION OF CHEETAH OUTSIDE FORMAL CONSERVATION AREAS IN THE THABAZIMBI DISTRICT, LIMPOPO PROVINCE by Kelly-Anne Wilson Supervisor: Prof. Dr. J. du P. Bothma Co-supervisor: Prof. Dr. G. H. Verdoorn Centre for Wildlife Management Faculty of Natural and Agricultural Sciences University of Pretoria Magister Scientiae (Wildlife Management) ABSTRACT The current status of the cheetah Acinonyx jubatus outside formal conservation areas in South Africa is undetermined. The largest part of the cheetah population in South Africa occurs on cattle and wildlife ranches. Conflict between cheetahs and landowners is common and cheetahs are often persecuted. Cheetah management and conservation efforts are hampered as little data are available on the free-roaming cheetah population. A questionnaire survey was done in the Thabazimbi district of the Limpopo province to collect data on the status and distribution of cheetahs in the district and on the ranching practices and attitudes of landowners. By using this method, a population estimate of 42 – 63 cheetahs was obtained. Camera trapping was done at a scent-marking post to investigate the marking behaviour of cheetahs. Seven different cheetahs were identified marking at one specific tree. -
Civettictis Civetta (Schreber, 1776)
Civettictis civetta (Schreber, 1776) The African civet, Civettictis civetta is native to and widely distributed in Africa. It was probably introduced to Sao Tome & Principe with the weasel Mustela nivalis to control rodents. African civets occupy a range of habitats including secondary forest, woodland, bush habitats as well as aquatic habitats. They are not common in interior forest habitats but thrive in degraded and deforested areas. They have been recorded at altitudes up to 5000 m asl on Mt Kilimanjaro The Guinea Lidless Skink (Afroablepharus africana) is classified as ‘Vulnerable (VU)’ in the IUCN Red List of Threatened Species. It is restricted to three locations on the islands of Sâo Tomé, Principé, and Rolas in the Gulf of Guinea. The main threats to this species are suspected to be loss of habitat through deforestation and predation Photo credit: Brianna Hackler by introduced mammals. Introduced mammals on these islands include the African civet, Norway rat (Rattus bocagei); the Sao Tome Canary (Neospiza concolor) and the norvegicus) ship rat (Rattus rattus), House mouse (Mus Sao Tome Fiscal (Lanius newtoni) are under threat of loss musculus), Mona monkey (Cercopithecus mona) and of habitat and potential predation by introduced mammals weasel. that include the African civet, ship rat, house mouse, Mona Declining populations of three endemic and ‘Critically monkey and weasel. Feral pigs (Sus scrofa) are also present Endangered (CR)’ birds the Sao Tome Ibis (Bostrychia and could be a threat. References: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2 ISSG 2012. Global Invasive Species Database Click here to view archives of previous weeks’ species. -
Controlled Animals
Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3. -
Canid, Hye A, Aardwolf Conservation Assessment and Management Plan (Camp) Canid, Hyena, & Aardwolf
CANID, HYE A, AARDWOLF CONSERVATION ASSESSMENT AND MANAGEMENT PLAN (CAMP) CANID, HYENA, & AARDWOLF CONSERVATION ASSESSMENT AND MANAGEMENT PLAN (CAMP) Final Draft Report Edited by Jack Grisham, Alan West, Onnie Byers and Ulysses Seal ~ Canid Specialist Group EARlliPROMSE FOSSIL RIM A fi>MlY Of CCNSERVA11QN FUNDS A Joint Endeavor of AAZPA IUCN/SSC Canid Specialist Group IUCN/SSC Hyaena Specialist Group IUCN/SSC Captive Breeding Specialist Group CBSG SPECIES SURVIVAL COMMISSION The work of the Captive Breeding Specialist Group is made possible by gellerous colltributiolls from the following members of the CBSG Institutional Conservation Council: Conservators ($10,000 and above) Federation of Zoological Gardens of Arizona-Sonora Desert Museum Claws 'n Paws Australasian Species Management Program Great Britain and Ireland BanhamZoo Darmstadt Zoo Chicago Zoological Society Fort Wayne Zoological Society Copenhagen Zoo Dreher Park Zoo Columbus Zoological Gardens Gladys Porter Zoo Cotswold Wildlife Park Fota Wildlife Park Denver Zoological Gardens Indianapolis Zoological Society Dutch Federation of Zoological Gardens Great Plains Zoo Fossil Rim Wildlife Center Japanese Association of Zoological Parks Erie Zoological Park Hancock House Publisher Friends of Zoo Atlanta and Aquariums Fota Wildlife Park Kew Royal Botanic Gardens Greater Los Angeles Zoo Association Jersey Wildlife Preservation Trust Givskud Zoo Miller Park Zoo International Union of Directors of Lincoln Park Zoo Granby Zoological Society Nagoya Aquarium Zoological Gardens The Living Desert Knoxville Zoo National Audubon Society-Research Metropolitan Toronto Zoo Marwell Zoological Park National Geographic Magazine Ranch Sanctuary Minnesota Zoological Garden Milwaukee County Zoo National Zoological Gardens National Aviary in Pittsburgh New York Zoological Society NOAHS Center of South Africa Parco Faunistico "La To:rbiera" Omaha's Henry Doorly Zoo North of Chester Zoological Society Odense Zoo Potter Park Zoo Saint Louis Zoo Oklahoma City Zoo Orana Park Wildlife Trust Racine Zoological Society Sea World, Inc. -
The Paradoxical Extinction of the Most Charismatic Animals
PERSPECTIVE The paradoxical extinction of the most charismatic animals Franck Courchamp1,2,3*, Ivan Jaric4,5,6, CeÂline Albert1, Yves Meinard7, William J. Ripple8, Guillaume Chapron9 1 Ecologie, SysteÂmatique and Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Universite Paris-Saclay, Orsay, France, 2 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America, 3 Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California, United States of America, 4 Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na SaÂdkaÂch, Česke Budějovice, Czech Republic, 5 Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany, 6 Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava, Belgrade, Serbia, 7 Universite Paris Dauphine, Paris Sciences & Lettres Research University, CNRS, LAMSADE, Paris, France, 8 Global Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America, 9 Department of Ecology, GrimsoÈ Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract A widespread opinion is that conservation efforts disproportionately benefit charismatic spe- cies. However, this doesn't mean that they are not threatened, and which species are ªchar- OPEN ACCESS ismaticº remains unclear. Here, we identify the 10 most charismatic animals and show that they are at high risk of imminent extinction in the wild. We also find that the public ignores Citation: Courchamp F, Jaric I, Albert C, Meinard Y, Ripple WJ, Chapron G (2018) The paradoxical these animals' predicament and we suggest it could be due to the observed biased percep- extinction of the most charismatic animals. -
Origin of the Egyptian Domestic Cat
UPTEC X 12 012 Examensarbete 30 hp Juni 2012 Origin of the Egyptian Domestic Cat Carolin Johansson Molecular Biotechnology Programme Uppsala University School of Engineering UPTEC X 12 012 Date of issue 2012-06 Author Carolin Johansson Title (English) Origin of the Egyptian Domestic Cat Title (Swedish) Abstract This study presents mitochondrial genome sequences from 22 Egyptian house cats with the aim of resolving the uncertain origin of the contemporary world-wide population of Domestic cats. Together with data from earlier studies it has been possible to confirm some of the previously suggested haplotype identifications and phylogeny of the Domestic cat lineage. Moreover, by applying a molecular clock, it is proposed that the Domestic cat lineage has experienced several expansions representing domestication and/or breeding in pre-historical and historical times, seemingly in concordance with theories of a domestication origin in the Neolithic Middle East and in Pharaonic Egypt. In addition, the present study also demonstrates the possibility of retrieving long polynucleotide sequences from hair shafts and a time-efficient way to amplify a complete feline mitochondrial genome. Keywords Feline domestication, cat in ancient Egypt, mitochondrial genome, Felis silvestris libyca Supervisors Anders Götherström Uppsala University Scientific reviewer Jan Storå Stockholm University Project name Sponsors Language Security English Classification ISSN 1401-2138 Supplementary bibliographical information Pages 123 Biology Education Centre Biomedical Center Husargatan 3 Uppsala Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687 Origin of the Egyptian Domestic Cat Carolin Johansson Populärvetenskaplig sammanfattning Det är inte sedan tidigare känt exakt hur, när och var tamkatten domesticerades.