Understanding the Drivers of Biodiversity on the Rocky Coast

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Drivers of Biodiversity on the Rocky Coast Understanding the drivers of biodiversity on the rocky coast Nina Schaefer A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy Evolution and Ecology Research Centre School of Biological, Earth and Environmental Science Faculty of Science University of New South Wales October 2018 Thesis/Dissertation Sheet Surname/Family Name : Schaefer Given Name/s : Nina Abbreviation for degree as give in the : PhD University calendar Faculty : Science School : Biological, Earth and Environmental Sciences Thesis Title : Understanding the drivers of biodiversity on the rocky coast Abstract 350 words maximum: (PLEASE TYPE) Urbanisation and climate change are pervasive stressors to natural ecosystems and have been linked to decreased biodiversity and ecological function. At the coastal fringe, intertidal rocky shores are threatened by urbanisation along shorelines and sea level rise, with the result that complex intertidal habitats are becoming rare and often replaced with simpler concrete structures. Communities that remain also experience altered light climates due to shading by engineered structures. To effectively manage and conserve urban intertidal ecosystems, we require a greater understanding of the drivers of diversity at micro- to macro scales. I begin by investigating the drivers of biodiversity on the small scale, where I was able to identify relationships between rock pool physical characteristics and associated biota around Sydney Harbour. Maximum width and depth, volume and height on shore were important drivers of biodiversity, but effects varied among organisms (i.e. sessile vs. mobile taxa) and between inner and outer locations of the lower estuary. I also found that the structure within rock pools can influence species abundances. Microhabitats such as overhangs were important to support grazers and rare species. I then investigated the effect of another potential driver of biodiversity common in urban intertidal areas: shading by engineered structures. Using a manipulative experiment, I found that the effect of varying levels of shading can influence taxa in different ways. Whereas high light intensities promoted greater algal cover, low light intensities supported higher abundances of mobile taxa. Finally, I worked at a larger scale and used predictive modelling to assess potential habitat loss of intertidal rocky shores due to sea level rise. I found that rocky shore communities in the Sydney area are likely to lose substantial habitat and may be considered ‘near threatened’ (under one category of the IUCN communities listing criteria) under the predicted 11.2mm/year sea level rise (i.e. scenario RCP8.5 (IPCC)).My research highlights the need to manage intertidal rocky shores at multiple scales. While conserving natural habitat should be set as priority, management strategies that incorporate features which support diversity, as identified in this thesis, can help mitigate biodiversity loss and help protect this important ecosystem. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………………… ……………………………………..………… ……….……………… ……… Signature……… …… Witness Signature …… … Date… The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE Date of completion of requirements ONLY for Award: ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... Date ……………………………………………........................... INCLUSION OF PUBLICATIONS STATEMENT UNSW is supportive of candidates publishing their research results during their candidature as detailed in the UNSW Thesis Examination Procedure. Publications can be used in their thesis in lieu of a Chapter if: • The student contributed greater than 50% of the content in the publication and is the “primary author”, ie. the student was responsible primarily for the planning, execution and preparation of the work for publication • The student has approval to include the publication in their thesis in lieu of a Chapter from their supervisor and Postgraduate Coordinator. • The publication is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in the thesis Please indicate whether this thesis contains published material or not. This thesis contains no publications, either published or submitted for publication (if this ☐ box is checked, you may delete all the material on page 2) Some of the work described in this thesis has been published and it has been documented in the relevant Chapters with acknowledgement (if this box is checked, you ☒ may delete all the material on page 2) This thesis has publications (either published or submitted for publication) incorporated ☐ into it in lieu of a chapter and the details are presented below CANDIDATE’S DECLARATION I declare that: • I have complied with the Thesis Examination Procedure • where I have used a publication in lieu of a Chapter, the listed publication(s) below meet(s) the requirements to be included in the thesis. Name Signature Date (dd/mm/yy) Nina Schaefer Acknowledgements I firstly would like to thank my supervisors Emma Johnston, Katherine Dafforn and Mariana Mayer-Pinto for their support throughout my candidature. Thank you for your expertise, guidance, valuable comments and patience throughout my research and the process of writing this thesis. I feel very lucky for having such an inspiring team of women behind me. I would also like to thank Graeme Clark for his statistical support and advice. Thank you for always having a spare minute and for making stats enjoyable. Thank you also to William Glamore and Kingsley Griffin for introducing me to the world of spatial modelling and giving me the chance to explore a whole new direction in my research. It’s been great fun. I would like to thank Simone Birrer, James Lavender, Damon Bolton, Brendan Lanham, Aria Lee, Sally Bracewell, Shin Ushiama, Vivian Sim, James Lavender, Sebastian Vadillo Gonzalez, Rosie Steinberg, John Turnbull, Mark Browne, Ana Bugnot, Hayden Schilling, Chris Drummond, Valentin Heimhuber, Jamie Ruprecht, Alice Harrison for helping me with fieldwork, troubleshooting stats, and for teaching me how to handle new equipment and new programs. A big thank you also to all the other past and present members of the AMEE/Poore and the Marine Ecology Lab. You’ve been absolutely fantastic and made the time spent in the office so much fun. Thank you to Alan Millar for helping me with the identification of algae. I would also like to thank
Recommended publications
  • Hatching Plasticity in the Tropical Gastropod Nerita Scabricosta
    Invertebrate Biology x(x): 1–10. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. DOI: 10.1111/ivb.12119 Hatching plasticity in the tropical gastropod Nerita scabricosta Rachel Collin,a Karah Erin Roof, and Abby Spangler Smithsonian Tropical Research Institute, 0843-03092 Balboa, Panama Abstract. Hatching plasticity has been documented in diverse terrestrial and freshwater taxa, but in few marine invertebrates. Anecdotal observations over the last 80 years have suggested that intertidal neritid snails may produce encapsulated embryos able to signifi- cantly delay hatching. The cause for delays and the cues that trigger hatching are unknown, but temperature, salinity, and wave action have been suggested to play a role. We followed individual egg capsules of Nerita scabricosta in 16 tide pools to document the variation in natural time to hatching and to determine if large delays in hatching occur in the field. Hatching occurred after about 30 d and varied significantly among tide pools in the field. Average time to hatching in each pool was not correlated with presence of potential preda- tors, temperature, salinity, or pool size. We also compared hatching time between egg cap- sules in the field to those kept in the laboratory at a constant temperature in motionless water, and to those kept in the laboratory with sudden daily water motion and temperature changes. There was no significant difference in the hatching rate between the two laboratory treatments, but capsules took, on average, twice as long to hatch in the laboratory as in the field.
    [Show full text]
  • An Analysis of the Community Composition of the Xiphophora Gladiata Dominated Subzone of the Tasmanian Sublittoral Fringe
    Papers and Proceedings ol the Royal Society of Tasmania, Volume 123, 1989 191 AN ANALYSIS OF THE COMMUNITY COMPOSITION OF THE XIPHOPHORA GLADIATA DOMINATED SUBZONE OF THE TASMANIAN SUBLITTORAL FRINGE by E. L. Rice (with five tables and nine text-figures) RICE, E.L., 1989 (31:x): An analysis of the community composition of the Xiphophora iladiata dominated subzone of the Tasmanian sublittoral fringe. Pap. Proc. R. Soc. Tasm. 123: I 91-209. https://doi.org/10.26749/rstpp.123.191 ISSN 0080-4703. Biological Sciences Branch, Department of Fisheries and Oceans, Halifax Research Laboratory, PO Box 550, Halifax, Nova Scotia B3J 2S7, Canada; formerly Department of Botany, University of Tasmania The rocky shore sublittoral fringe of the oceanic coasts of Tasmania contains a subzone dominated by the large brown alga Xiphophora iladiata. The community composition of this subzone is here examined at fourteen sites. The phytal and fauna! assemblages are analysed by principal co-ordinate, classification and nodal analyses. This subzone is found to have a high species richness. including species which had been thought to occupy only higher or lower tidal levels. It is suggested that both plant and animal assemblages are strongly influenced by wave exposure, freshwater run-off and geography. Key Words: marine community composition, sublittoral fringe, Xiphophora, multivariate analyses. INTRODUCTION (Bennett & Pope 1960). Thus, on the oceanic coasts of Tasmania it is possible to define a Xiphophora The rocky shores of southeastern Australia are subzone, dominated by X. g/adiata, which marks known to be occupied primarily by barnacles and the highest limit of the sublittoral fringe on very molluscs in the upper intertidal (Underwood 1981), exposed shores and represents the upper sublittoral while algae dominate at midshore level and below.
    [Show full text]
  • (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: the Genera Nodilittorina, Austrolittorina and Afrolittorina
    © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 75–122. ISSN 0067-1975 The Subfamily Littorininae (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: The Genera Nodilittorina, Austrolittorina and Afrolittorina DAVID G. REID* AND SUZANNE T. WILLIAMS Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom [email protected] · [email protected] ABSTRACT. The littorinine gastropods of the temperate southern continents were formerly classified together with tropical species in the large genus Nodilittorina. Recently, molecular data have shown that they belong in three distinct genera, Austrolittorina, Afrolittorina and Nodilittorina, whereas the tropical species are members of a fourth genus, Echinolittorina. Austrolittorina contains 5 species: A. unifasciata in Australia, A. antipodum and A. cincta in New Zealand, and A. fernandezensis and A. araucana in western South America. Afrolittorina contains 4 species: A. africana and A. knysnaensis in southern Africa, and A. praetermissa and A. acutispira in Australia. Nodilittorina is monotypic, containing only the Australian N. pyramidalis. This paper presents the first detailed morphological descriptions of the African and Australasian species of these three southern genera (the eastern Pacific species have been described elsewhere). The species-level taxonomy of several of these has been confused in the past; Afrolittorina africana and A. knysnaensis are here distinguished as separate taxa; Austrolittorina antipodum is a distinct species and not a subspecies of A. unifasciata; Nodilittorina pyramidalis is separated from the tropical Echinolittorina trochoides with similar shell characters. In addition to descriptions of shells, radulae and reproductive anatomy, distribution maps are given, and the ecological literature reviewed.
    [Show full text]
  • The Morphology and Evolution of Tooth Replacement in the Combtooth Blennies
    The morphology and evolution of tooth replacement in the combtooth blennies (Ovalentaria: Blenniidae) A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Keiffer Logan Williams IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Andrew M. Simons July 2020 ©Keiffer Logan Williams 2020 i ACKNOWLEDGEMENTS I thank my adviser, Andrew Simons, for mentoring me as a student in his lab. His mentorship, kindness, and thoughtful feedback/advice on my writing and research ideas have pushed me to become a more organized and disciplined thinker. I also like to thank my committee: Sharon Jansa, David Fox, and Kory Evans for feedback on my thesis and during committee meetings. An additional thank you to Kory, for taking me under his wing on the #backdattwrasseup project. Thanks to current and past members of the Simons lab/office space: Josh Egan, Sean Keogh, Tyler Imfeld, and Peter Hundt. I’ve enjoyed the thoughtful discussions, feedback on my writing, and happy hours over the past several years. Thanks also to the undergraduate workers in the Simons lab who assisted with various aspects of my work: Andrew Ching and Edward Hicks for helping with histology, and Alex Franzen and Claire Rude for making my terms as curatorial assistant all the easier. In addition, thank you to Kate Bemis and Karly Cohen for conducting a workshop on histology to collect data for this research, and for thoughtful conversations and ideas relating to this thesis. Thanks also to the University of Guam and Laurie Raymundo for hosting me as a student to conduct fieldwork for this research.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Echinolittorina Peruviana (Lamarck, 1822): Antecedentes De La Especie
    Sociedad Malacológica de Chile (SMACH) Amici Molluscarum 18: 39-42 (2010) Echinolittorina peruviana (Lamarck, 1822): antecedentes de la especie Viviana M. Castillo y Donald I. Brown Laboratorio de Biología de la Reproducción y del Desarrollo, Departamento de Biología y Ciencias Ambientales, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile. E-mail: [email protected] Clasificación Clase Gastropoda Cuvier, 1795 en cuya base interna se observa una línea blanca, Subclase Orthogastropoda Ponder y Lindberg, 1997 curvada hacia la columela, que es cóncava a recta Superorden Caenogastropoda Cox, 1960 de color café lechoso o muy oscuro (Guzmán et al ., Orden Sorbeoconcha Ponder y Lindberg, 1997 1998). La protoconcha no se observa (Reid, Suborden Hypsogastropoda Ponder y Lindberg, 1997 2002a). Los individuos adultos poseen externa- Infraorden Littorinimorpha Golikov y Starobogatov, 1975 mente una coloración muy característica, con Superfamilia Littorinoidea Children, 1834 líneas blancas y negras verticales en forma de zig- Familia Littorinidae Gray, 1840 zag (Guzmán et al ., 1998; Reid, 2002a); en cam- Subfamilia Littorininae Children, 1834 bio, los juveniles son de color negro (Jordán y Género Echinolittorina Habe, 1956 Ramorino, 1975). La cabeza y los tentáculos son de color negro, con un borde blanco alrededor del ojo; la rádula tiene una longitud que fluctúa entre 2,8 y Sinonimia 3,4 mm (Reid, 2002a). Para Echinolittorina peruviana (Lamarck, 1822) se han recuperado de la literatura los siguientes sinónimos (Reid, 2002a; Guzmán et al ., 1998): Distribución geográfica Phasianella peruviana Lamarck, 1822 Su distribución latitudinal, según distintos autores, Littorina peruviana Gray, 1839 tiene como límite sur Valparaíso (Chile) Turbo zebra Wood, 1828 (Marincovich, 1973; Álamo y Valdivieso, 1987); Littorina zebra Phillipi, 1847 sin embargo, Aldea y Valdovinos (2005) recien- Littorina zebra var.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Ontogenetic Development of Lipophrys Trigloides (Pisces: Blenniidae), with Some Notes on the Spawning Behaviour
    J. Mar. Biol. Ass. U.K. (2005), 85, 185^188 Printed in the United Kingdom Ontogenetic development of Lipophrys trigloides (Pisces: Blenniidae), with some notes on the spawning behaviour P O Cla¤udia Faria* ,Fa¤tima Gil and V|¤tor C. Almada* *Unidade de Investigac°a‹ o em Eco-Etologia, Instituto Superior de Psicologia Aplicada, R. Jardim do Tabaco 34, O P-1149-041 Lisboa, Portugal. Aqua¤rio Vasco da Gama, R. Direita, Dafundo, P-1495 Lisboa, Portugal. P Corresponding author, e-mail: [email protected] The full developmental sequence from egg to juvenile of Lipophrys trigloides in controlled conditions is described. In addition, some notes on the spawning behaviour of adults are provided. Embryonic develop- ment lasted 13^14 days at 21.00^23.008C, 16^17 day s at 17.25 ^18.508C and 17^18 days at 14.00^16.508C. Newly hatched larvae measured 4.8 mm, had the mouth and anus opened, pigmented eyes and almost no yolk. Most larvae settled between day 39 and 42 after hatching at 16.0^17.0 mm total length (TL) and showed full juvenile pigmentation patterns and behaviour 5 to 10 days later (17.0^18.0 mm TL). A summary of the characteristics of the eggs and larvae that may help in the distinction between L. trigloides and Lipophrys pholis, a very close related species, is also provided. INTRODUCTION fed twice a day with Brachionus sp. enriched with protein Selco (Artemia Systems) and algae, which were replaced Lipophrys trigloides (Valenciennes, 1836) is a relatively by Artemia sp.
    [Show full text]
  • Four Marine Digenean Parasites of Austrolittorina Spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and Molecular Data
    Syst Parasitol (2014) 89:133–152 DOI 10.1007/s11230-014-9515-2 Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data Katie O’Dwyer • Isabel Blasco-Costa • Robert Poulin • Anna Falty´nkova´ Received: 1 July 2014 / Accepted: 4 August 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract Littorinid snails are one particular group obtained. Phylogenetic analyses were carried out at of gastropods identified as important intermediate the superfamily level and along with the morpholog- hosts for a wide range of digenean parasite species, at ical data were used to infer the generic affiliation of least throughout the Northern Hemisphere. However the species. nothing is known of trematode species infecting these snails in the Southern Hemisphere. This study is the first attempt at cataloguing the digenean parasites Introduction infecting littorinids in New Zealand. Examination of over 5,000 individuals of two species of the genus Digenean trematode parasites typically infect a Austrolittorina Rosewater, A. cincta Quoy & Gaim- gastropod as the first intermediate host in their ard and A. antipodum Philippi, from intertidal rocky complex life-cycles. They are common in the marine shores, revealed infections with four digenean species environment, particularly in the intertidal zone representative of a diverse range of families: Philo- (Mouritsen & Poulin, 2002). One abundant group of phthalmidae Looss, 1899, Notocotylidae Lu¨he, 1909, gastropods in the marine intertidal environment is the Renicolidae Dollfus, 1939 and Microphallidae Ward, littorinids (i.e. periwinkles), which are characteristic 1901. This paper provides detailed morphological organisms of the high intertidal or littoral zone and descriptions of the cercariae and intramolluscan have a global distribution (Davies & Williams, 1998).
    [Show full text]
  • Linking Behaviour and Climate Change in Intertidal Ectotherms: Insights from 1 Littorinid Snails 2 3 Terence P.T. Ng , Sarah
    1 Linking behaviour and climate change in intertidal ectotherms: insights from 2 littorinid snails 3 4 Terence P.T. Nga, Sarah L.Y. Laua, Laurent Seurontb, Mark S. Daviesc, Richard 5 Staffordd, David J. Marshalle, Gray A.Williamsa* 6 7 a The Swire Institute of Marine Science and School of Biological Sciences, The 8 University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 9 b Centre National de la Recherche Scientifique, Laboratoire d’Oceanologie et de 10 Geosciences, UMR LOG 8187, 28 Avenue Foch, BP 80, 62930 Wimereux, France 11 c Faculty of Applied Sciences, University of Sunderland, Sunderland, U.K. 12 d Faculty of Science and Technology, Bournemouth University, U.K. 13 e Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, 14 Gadong BE1410, Brunei Darussalam 15 16 Corresponding author: The Swire Institute of Marine Science, The University of Hong 17 Kong, Cape d' Aguilar, Shek O, Hong Kong; [email protected] (G.A. Williams) 18 19 Keywords: gastropod, global warming, lethal temperature, thermal safety margin, 20 thermoregulation 21 22 Abstract 23 A key element missing from many predictive models of the impacts of climate change 24 on intertidal ectotherms is the role of individual behaviour. In this synthesis, using 25 littorinid snails as a case study, we show how thermoregulatory behaviours may 26 buffer changes in environmental temperatures. These behaviours include either a 27 flight response, to escape the most extreme conditions and utilize warmer or cooler 28 environments; or a fight response, where individuals modify their own environments 29 to minimize thermal extremes. A conceptual model, generated from studies of 30 littorinid snails, shows that various flight and fight thermoregulatory behaviours may 31 allow an individual to widen its thermal safety margin (TSM) under warming or 32 cooling environmental conditions and hence increase species’ resilience to climate 33 change.
    [Show full text]
  • A Modified Key for Rapid Determination of Blennioidea (Pisces: Perciformes) in the Adriatic Sea
    ISSN: 0001-5113 ACTA ADRIAT., UDC: 597.5 (262.3) AADRAY 51(1): 55 - 65, 2010 A modified key for rapid determination of Blennioidea (Pisces: Perciformes) in the Adriatic Sea martina OrlandO-BOnaca * and lovrenc lipej Marine Biology Station, National Institute of Biology, Fornače 41,6330 Piran, Slovenia * Corresponding author, e-mail: [email protected] The identification key covers 20 species of Blennioidea presently known in the Adriatic Sea, and one additional species known to occur in freshwaters. The standard format of a dichotomous bracket key was used. The key was developed in order to make the process of identification of Adriatic blennioids clear, simple and non-destructive, thus providing a small number of easily verifiable characters instead of proposing overlapping or highly variable characters. The key is also aimed at in-the-lab-training of SCUBA observers, since many biases may influence the accuracy and precision of blennioid identification when using non-destructive visual census techniques. Key words: Blennioidea, identification key, non-destructive, main characters, adriatic Sea INTRODUCTION (1968) for the venice area, kOlOmBatović (1892) and pallaOrO (1989) for the middle eastern Blennies and their relatives are abundant adriatic, pallaOrO & ŠTevčić (1989) for the representatives of the coastal fish community in whole adriatic (which already listed 21 species the mediterranean and other seas. To date, one of Blennioidea), and by lipej & richTer (1999) clinid (genus Clinitrachus), three tripterygiids for Slovenian coastal waters. The presence of (genus Tripterygion), and 17 blenniids (gen- one species in the adriatic Sea is still question- era Aidablennius, Blennius, Coryphoblennius, able since the specimen of Salaria basilisca Lipophrys, Parablennius, Paralipophrys and captured near piran in 1874, and deposited in Salaria) are known to inhabit the adriatic Sea the natural history museum of vienna (dulčić (Table 1) (lipej et al., 2008).
    [Show full text]
  • Fracture Mechanics of Mollusc Shells
    Fracture mechanics of mollusc shells Michael B.Cortie,a,* Katie E. McBean,b Margaret M. Elcombec aInstitute for Nanoscale Technology, University of Technology Sydney, Australia bMicrostructural Analysis Unit, University of Technology Sydney, Australia cBragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, NSW, Australia Elsevier use only: Received date here; revised date here; accepted date here Abstract The shape and structure of the shells of molluscs has attracted considerable attention. One aspect of interest is the comparatively high resistance to fracture of these shells. It is known that they are composite structures of aragonite, other calcereous materials, and up to 5% by volume of protein ‘glue’. A large component of their toughening derives from crack tip blunting, deflection and closure, concepts well-known from the field of fracture mechanics. However, the possibility that they might also derive a measure of toughening from a residual stress distribution has been generally overlooked, although Illert first raised this over a decade ago. The optimum situation would be when the inner surface of the shell is maintained in a state of tensile stress, while the outer layers are in the necessarily counter-balancing compressive state. We have examined this hypothesis using a combination of neutron diffraction and scanning electron microscopy and find that it is certainly feasible. However, a definitive proof will require a diffraction study at higher resolution. © 2006 Elsevier Science. All rights reserved Keywords: Mollusc shell, Fracture, Residual stress, Neutron diffraction The mathematically regular spirals of mollusc shells plastic deformation [5]. Although these microstructural (e.g.[1-3] and references therein) and their comparatively mechanisms certainly provide toughening, it might also be high resistance to fracture (e.g.[4,5]) have long been of worthwhile to consider an often overlooked proposal made interest.
    [Show full text]