Automobile Ride, Handling, and Suspension

Total Page:16

File Type:pdf, Size:1020Kb

Automobile Ride, Handling, and Suspension Automobile Ride, Handling, and Suspension Automobile Ride, Handling, and Suspension Design With Implications for Low-Mass Vehicles When carried to the extreme, today's emphasis on automobile mass reduction has significant implications for vehicle ride and suspension design. We therefore review traditional automobile suspension systems and offer comments on the special considerations of suspension systems of extremely low-mass passenger cars. The ride and handling characteristics of an automobile center on the characteristics of the tires. Tires are the vehicle's reaction point with the roadway. They manage the input of forces and disturbances from the road, and they are the final link in the driver's chain of output commands. Tire characteristics are therefore a key factor in the effect the road has on the vehicle, and in the effectiveness of the output forces that control vehicle stability and cornering characteristics. The tire's basic characteristics are managed by the system of springs, dampers, and linkages that control the way in which tires move and react to disturbances and control inputs. The bounce and steering movements of the wheels provide for a variety of simultaneous needs. They provide steering input for directional control, they compensate for (or utilize) body roll to improve cornering ability, and they move vertically in response to roadway irregularities in order to smooth out the ride and maintain adhesion. Wheels are connected to the sprung mass through linkages and are therefore affected by the rolling and pitching movements that occur about the suspensions system's reaction centers. The mechanical requirements for directional control, cornering forces, and ride comfort are continuously changing according to roadway and driving conditions. The suspension and steering linkages are designed to allow the wheels to move as needed to meet the dynamic requirements of various combinations of events. However, the designer is normally constrained by mechanical conflicts between structural members, the engine and drivetrain, and other components that also must fit into the vehicle. Consequently, errors in geometry are common, and the actual suspension system often falls short of the ideal in a variety of ways. Ride Comfort The quality referred to as "ride comfort" is affected by a variety of factors, including high frequency http://www.rqriley.com/suspensn.html (1 of 19) [9/6/2002 08:02:09] Automobile Ride, Handling, and Suspension vibrations, body booming, body roll and pitch, as well as the vertical spring action normally associated with a smooth ride. If the vehicle is noisy, if it rolls excessively in turns, or lurches and pitches during acceleration and braking, or if the body produces a booming resonance, occupants will experience an "uncomfortable ride." The ride quality normally associated with the vehicle's response to bumps is a factor of the relatively low frequency bounce and rebound movements of the suspension system. Following a bump, the undamped suspension (without shocks) of a vehicle will experience a series of oscillations that will cycle according to the natural frequency of the system. Ride is perceived as most comfortable when the natural frequency is in the range of 60 to 90 cycles per minute (CPM), or about 1 Hz to 1.5 Hz. When the frequency approaches 120 CPM (2 Hz), occupants perceive the ride as harsh. Consequently, the suspension of the average family sedan will have a natural frequency of about 60 to 90 CPM. A high-performance sports car will have a stiffer suspension with a natural frequency of about 120 to 150 CPM (2 to 2.5 Hz). Originally, human sensitivity to ride frequency was believed to be associated with the natural oscillations of an adult human body during a walking gait. An adult walks at the rate of about 70 to 90 steps per minute (frequency), and the torso moves up and down about 2 inches (amplitude) with each step. Early designers therefore attempted to constrain vehicle oscillations to those limits, the ride was indeed comfortable, and the theory was therefore believed to be correct. Today, our information about human sensitivity to vibrations is more sophisticated. We know that amplitude affects human sensitivity to frequency, and that there are some frequencies that are especially uncomfortable. For example, a frequency in the range of 30 to 50 CPM will produce motion sickness. The visceral region of the body objects to frequencies between 300 and 400 CPM. The head and neck regions are especially sensitive to vibrations of 1,000 to 1,200 CPM (18 to 20 Hz). These are the types of vibrations that are likely to emanate from the tires or from axle hop. Longitudinal oscillations are sensed primarily in the torso. Surprisingly, humans are most uncomfortable with longitudinal vibrations in the 60 to 120 CPM range (the region of greatest comfort for vertical vibrations). Discomfort from longitudinal disturbances occur when the vehicle pitches or when the seats lean rearward at a higher-than-normal angle. The perception of ride quality is degraded by virtually any disturbance experienced by the occupant. Human sensitivity varies according to the nature of the disturbance. Consequently, a "good ride" depends on the overall design of the vehicle, rather than just the design of the suspension system. To produce a comfortable ride, the high-frequency vibrations of wind and drivetrain noise must be minimized and properly isolated, and the suspension must be set in appropriate rubber mountings to isolate high-frequency roadway-induced vibrations. However, the natural frequency of the suspension system is still considered the cornerstone of a comfortable ride. The static deflection rate of the suspension determines its natural frequency. Static deflection is the rate at which the suspension compresses in response to weight. Other factors, such as the effects of damping (shocks) and system friction, alter the natural frequency of the suspension system. However, the primary determinate is the undamped static deflection rate. If this rate is used in calculations, http://www.rqriley.com/suspensn.html (2 of 19) [9/6/2002 08:02:09] Automobile Ride, Handling, and Suspension results will likely be very close to the actual value needed for a smooth ride. The static deflection rate of the suspension is not the same as the spring rate. Springs are located inboard of the wheels where they are normally subjected to the mechanical advantage of the suspension linkages. Static deflection is related to the distance the sprung mass (essentially the body) moves downward in response to weight. A static deflection of 10 inches in response to a weight equal to that of the sprung mass will produce a natural frequency of 1 Hz. A 5 inch deflection produces a 1.4 Hz frequency, and a 1 inch deflection results in a 3.13 Hz frequency. The natural frequency of a suspension can be determined by a simple formula expressed as follows: NF = Natural Frequency in Cycles Per Minute (divided by 60=Hz). SD = Static Deflection in Inches. Implications of High Payload-to-Vehicle Weight Ratio As vehicle mass is reduced, the payload-to-vehicle weight ratio naturally increases, which has trickle- down effects throughout the vehicle. An extremely low mass automobile, in the order of 1,000 pounds or less, for example, will have an unusually high payload-to-vehicle weight ratio. Variations in payload affect the natural frequency of the suspension. The critical damping force also varies with load. Over-damping (above 100 percent) dramatically reduces ride quality. In order to avoid over-damping at light loads, some degree of under damping is usually accepted at the fully- laden weight. Also, a passive suspension in combination with a high payload-to-vehicle weight ratio require a relatively high static deflection rate (a stiff suspension) in order to avoid undesirable effects on vehicle ride height. Ride height refers to the height of the body at a given load. It is important to keep ride height variations within predetermined limits in order to maintain headlight dip angle, provide adequate suspension stroke, and to provide an appropriate ground clearance. Load naturally affects the standing height of the vehicle. As load increases, the vehicle rests lower on its suspension, and at lighter loads it rests higher. Heavy loads in the luggage compartment can affect the pitch of the vehicle. The importance of a high payload-to-vehicle weight ratio becomes more apparent when the effect of payload on a standard sedan is compared to the effect of the same payload on a hypothetical ultralight vehicle. For example, a standard sedan of 3,500 pounds curb weight and a natural frequency of 1.2 Hz will rest 0.7 inch lower with the weight of two, 175 pound occupants aboard. The same static deflection rate in a 1,000-pound vehicle will cause the body to rest 2.45 inches lower with an equal, two-occupant load. A deflection of this magnitude will cause significant changes in the geometric relationship of suspension components. With a single occupant load, such a suspension would also http://www.rqriley.com/suspensn.html (3 of 19) [9/6/2002 08:02:09] Automobile Ride, Handling, and Suspension allow the body to list to one side. In order to equal the payload-induced deflection of the large car, the 1,000 pound vehicle must have a static deflection rate of 2 inches, which will result in a relatively stiff, sports-car-like ride of 2.2 Hz natural frequency. Consequently, an ultralight vehicle with a relatively high ratio of payload to vehicle weight will also have a relatively stiff ride. A self-leveling suspension and active damping could improve the suspension characteristics, but at higher cost and increased mass. Payload variations can also have a much greater effect on the center of gravity of a low mass vehicle.
Recommended publications
  • Suspension Geometry and Computation
    Suspension Geometry and Computation By the same author: The Shock Absorber Handbook, 2nd edn (Wiley, PEP, SAE) Tires, Suspension and Handling, 2nd edn (SAE, Arnold). The High-Performance Two-Stroke Engine (Haynes) Suspension Geometry and Computation John C. Dixon, PhD, F.I.Mech.E., F.R.Ae.S. Senior Lecturer in Engineering Mechanics The Open University, Great Britain. This edition first published 2009 Ó 2009 John Wiley & Sons Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.
    [Show full text]
  • Suspension by Design
    Version 5.114A June 2021 SusProg3D - Suspension by Design Robert D Small All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. Printed: June 2021 Contents 3 Table of Contents Foreword 0 Part 1 Overview 12 1 SusProg3D................................................................................................................................... - Suspension by Design 12 2 PC hardware................................................................................................................................... and software requirements 14 3 To run the..................................................................................................................................
    [Show full text]
  • Double Wishbone Suspension System; a Research
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2, July 2019 Double Wishbone Suspension System; A Research Vignesh B S, Sufiyan Ahmed, Chandan V, Prashant Kumar Shrivastava Abstract: Advancements in science and technology, effective suspension is proportional to change in length of spring designs and newly advanced ways of manufacturing for the need where spring is either compressed or stretched based on to fulfill the customer expectations and to provide them better situation. Spring rate for a spring is defined as weight goods has let to these developments. With the invent and help of required for one inch deflection in spring, stiffer springs numerous mechatronic systems there is technological advancements in various automobile sectors and thus gave better require more weight and softer springs require less weight performance output A suspension system has responsibility of for unit inch of deflection. There are variable spring rates safety of both the vehicle and occupants by providing stability which can have both stiffer and softer spring rates in one and comfort ride during its maneuvers. Without the help of any spring called as progressive rate spring; suspension system, it would have made extremely hard for a driver to control a vehicle since all the shocks and vibrations would have been directly transmitted to steering without any damping. The main aim of this study to discuss about the designing and analysis of double wishbone suspension system for automobile. Keywords: Dependent Suspension, Independent Suspension, Double Wishbones, spring and Damper System I. INTRODUCTION Suspension is the system that connects vehicle body (chassis) to its wheels and allows relative motion between the two and hence isolating the vehicle from road shocks.
    [Show full text]
  • Compliant Mechanism Suspensions
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2006-06-02 Compliant Mechanism Suspensions Timothy Melvin Allred Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Mechanical Engineering Commons BYU ScholarsArchive Citation Allred, Timothy Melvin, "Compliant Mechanism Suspensions" (2006). Theses and Dissertations. 434. https://scholarsarchive.byu.edu/etd/434 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. COMPLIANT MECHANISM SUSPENSIONS by Timothy M. Allred A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Mechanical Engineering Brigham Young University August 2003 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Timothy M. Allred This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. ____________________________ _______________________________________ Date Larry L. Howell, Chair ___________________________ _______________________________________ Date Spencer P. Magleby ___________________________ _______________________________________ Date Robert H. Todd BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Timothy M. All- red in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.
    [Show full text]
  • Review: Design and Failure Analysis of Front Lower Suspension Arm of Car
    ISSN (Online) : 2319 - 8753 ISSN (Print) : 2347 - 6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization Volume 6, Special Issue 1, January 2017 International Conference on Recent Trends in Engineering and Science (ICRTES 2017) 20th-21st January 2017 Organized by Research Development Cell, Government College of Engineering, Jalagon (M. S), India Review: Design and Failure analysis of Front Lower Suspension Arm of Car 1Tilottama A. Chaudhari, 2Er Navneet K. Patil , 3Jagruti R Surange P.G. Student, Department of Mechanical Engineering, S.S.B.T‘s, C.O.E.T., Bambhori, Jalgaon, Maharashtra, India 1 Associate Professor, Department of Mechanical Engineering, S.S.B.T‘s, C.O.E.T., Bambhori, Jalgaon, Maharashtra, India 2 Assistant professor, Department of Mechanical Engineering, S.S.B.T‘s, C.O.E.T., Bambhori, Jalgaon, Maharashtra, India 3 ABSTRACT: Suspension systems have been widely applied to vehicles, from the horse-drawn carriage with flexible leaf springs fixed in the four corners, to the modern automobile with complex control algorithms. The suspension of a road vehicle is usually designed with two objectives to isolate the vehicle body from road irregularities and to maintain contact of the wheels with the roadway. The suspension link allows wheels to rise and fall on their own without affecting the opposite wheel. In this case, the wheels are either not connected at all or are connected through universal joints with a swing axle. Suspensions with other devices, such as anti-roll bar that link the wheels in some way are still classed as independent suspension link.
    [Show full text]
  • Suspension Development for a Prototype Urban Personal Vehicle Master’S Thesis in Automotive Engineering
    Suspension development for a prototype Urban Personal Vehicle Master's thesis in Automotive Engineering SERGEJ ABYZOV Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Group CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2014 Master's thesis 2014:10 MASTER'S THESIS IN AUTOMOTIVE ENGINEERING Suspension development for a prototype Urban Personal Vehicle SERGEJ ABYZOV Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Group CHALMERS UNIVERSITY OF TECHNOLOGY G¨oteborg, Sweden 2014 Suspension development for a prototype Urban Personal Vehicle SERGEJ ABYZOV © SERGEJ ABYZOV, 2014 Master's thesis 2014:10 ISSN 1652-8557 Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Group Chalmers University of Technology SE-412 96 G¨oteborg Sweden Telephone: +46 (0)31-772 1000 Cover: Double lane change manouvre at a speed of 50 [km/h], with an anti-roll bar installed on the front axle. Chalmers Reproservice G¨oteborg, Sweden 2014 Suspension development for a prototype Urban Personal Vehicle Master's thesis in Automotive Engineering SERGEJ ABYZOV Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Group Chalmers University of Technology Abstract This thesis describes the process of suspension development for a prototype Urban Personal Vehicle (PUNCH). The PUNCH is a crash safe prototype of an Urban Personal Vehicle developed at the Chalmers University of Technology, Gothenburg, Sweden. The urban personal vehicle is designed for the dense urban areas of today. It's a small, car-like vehicle with space for one driver (and maybe one or two passengers) that is to be driven at city speeds (sub 50 [km/h]).
    [Show full text]
  • Geometric Design of Independent Suspension Linkages
    Geometric Design of Independent Suspension Linkages by David E. Kline A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in the University of Michigan 2018 Doctoral Committee: Professor Gregory M. Hulbert, Chair Assistant Professor Evgueni Filipov Associate Professor C. David Remy Professor Kazuhiro Saitou David E. Kline [email protected] ORCID iD: 0000-0001-5194-1837 Copyright c 2018 by David E. Kline. Table of Contents List of Tables v List of Figures vi Abstract xii Chapter 1: Introduction 1 1.1 Basic Terms . 4 1.2 History of the Suspension . 7 1.3 Suspension Design . 17 1.4 Research Objectives . 34 1.5 Dissertation Format . 35 Chapter 2: Literature Review 37 2.1 Wheel Motion Specification . 37 2.2 Enumeration of Suspension Architectures . 45 2.3 Linkage Dimensioning . 52 2.4 Filtering Solutions . 56 2.5 Summary . 58 Chapter 3: Wheel Kinematics 59 3.1 Mathematical Preliminaries . 59 3.2 Wheel Motion . 61 3.3 Wheel Trajectory . 67 3.4 Example Trajectory . 71 ii Chapter 4: Number Synthesis 77 Chapter 5: The R Joint 81 5.1 Synthesis . 81 5.2 Synthesis Example . 86 5.3 Analysis . 87 5.4 Analysis Example . 91 Chapter 6: The S-S Link 96 6.1 Design Equations . 96 6.2 Synthesis Example . 98 6.3 Set-Based Design of the Five S-S Link Suspension . 101 6.4 Analysis of the Five S-S Link Suspension . 108 Chapter 7: The C Joint 111 7.1 Synthesis . 111 7.2 Synthesis Example . 113 7.3 An S-S Link for the C Joint .
    [Show full text]
  • Design and Manufacture of an Adaptive Suspension System a Major Qualifying Project Report Submitted to the Faculty Of
    Design and Manufacture of an Adaptive Suspension System A Major Qualifying Project Report submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more information about the projects program at WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html In partial fulfillment of the requirements for the Degree of Bachelor Science By Michael Gifford, Mechanical Engineering Tanner Landis, Mechanical Engineering Cody Wood, Mechanical Engineering Date April 30, 2015 Professor Cagdas Onal, Advisor Siamak Ghorbani-Faal, Co-Advisor Abstract This project focuses on the design, development, evaluation, and analysis of an adjustable vehicle suspension system. This system is aimed to improve vehicle performance on all terrain conditions from rough to flat surfaces. The proposed design is accomplished through the modification of a double-triangulated four-bar linkage suspension. The modifications allow the upper links of the suspension system to change vertical position on-the-fly, to meet operator preference. The position change alters suspension geometry and therefore the performance characteristics of the vehicle; specifically the anti-squat which impacts vehicle sag and therefore traction. Thus, traction is directly controlled through adjustments to the suspension system. Through video motion analysis of a prototype vehicle before and after the proposed design modifications, we rigorously evaluated the effect of the adjustable suspension system. Future applications of this design are expected to improve the performance characteristics of vehicles of all sizes, ranging from mobile robots to automobiles.
    [Show full text]