Quick viewing(Text Mode)

Disconnection Approach Retrosynthetic Analysis

Disconnection Approach Retrosynthetic Analysis

DISCONNECTION APPROCH: Retrosynthetic Principles and Synthetic Applications

XV Summer School in Pharmaceutical and Medicinal Chemistry Rio de Janeiro, Brasil 09-13 February 2009

Pier Giovanni Baraldi Department of Pharmaceutical Siences Ferrara University, Italy Disconnection Approach

Retrosynthetic Analysis: the logical process of analysing the structure of a target to discern a possible synthesis step by step

Retrosynthetic arrow is: A B (B is a precursor of A) ( Means “can be made from”)

Functional group interconversion (FGI) Functional group addiction (FGA) Functional group removal (FGR) Disconnection: the formal reverse of a bond forming reaction (conceptual cleavage of a bond to break the molecule into possible starting materials) dn : Functionalized (d, donor) with the heteroatom of the functional group joined to the nth carbon atom an synthon: Functionalized electrophile (a, acceptor) with the heteroatom of the functional group joined to the nth carbon atom Reagent: A chemical compound used in practice for a synthon Disconnection Approach and Reagents dn synthon: Functionalized nucleophile (d, donor) with the heteroatom of the functional group joined to the nth carbon atom.

d1 CN d2 CH2CHO an synthon: Functionalized electrophile (a, acceptor) with the heteroatom of the functional group joined to the nth carbon atom.

a1 CH2OH a2 CH2CHO a3 CH2CH2CHO

Reagent: A chemical compound used in practice for a synthon.

Synthon Reagent

CH3 CH3I or CH3oTs CH3 CH3MgBr

CH2CH2CHO CHO Retrosyhthesis of Retrosynthetic Pathway: Benzocain from toluene

O O O

OEt C-O OH FGI OH

H2N H2N O2N

Benzocaine FGI •Toluene is a readily available starting material • Me is activating and ortho/para- directing Me Me + • We know reagents for the synthon NO2 C-N

O2N Toluene

Synthesis O O Me OH Me H SO HNO OH 2 4, 3 KMnO4 H2 Pd/C H2N O2N Oxidation O N Chemoselective 2 reduction EtOH/ H+

O

OEt

H2N Eletrophilic Aromatic Substitution How to identify the most suitable synthons and reagents? Which disconnection and which sense of polarity?

O O

MeO or

O Synthons MeO

MeO

O Reagents +

Cl Me MeO

O O AlCl3 Synthesis + Me

MeO Cl Me o/p directing and activating MeO Eletrophilic Aromatic Substitution How to identify the suitable synthons and reagents? Key reactions and Reagents for FGI in the contest of Aromatic Chemistry

Synthon Reagent Reaction

R+ RBr with Lewis acid Friedel Craft alkylation ROH/H+ + RCO RCOCl with Lewis Acid Friedel Craft acylation + NO2 HNO /H SO Nitration + 3 2 4 Cl Cl /FeCl Chlorination Br+ 2 3 Br2 and Lewis Acid Bromination SO3 H2SO4 Sulfonation Eletrophilic Aromatic Substitution How to identify the most suitable synthons and reagents? Key reactions and Reagents for FGI in the contest of Aromatic Chemistry

Y X Reagent

NO2 NH2 H2 COR CH(OH)R NaBH4 COR CH2R Zn/Hg CH3 COOH KMnO4 COR OCOR RCO3H CN COOH Hydrolysis Eletrophilic Aromatic Substitution Retrosynthesis of

BHT OH Retrosynthesism of BHT = Buthylated Hydroxy Tolu BHT ia an antioxidant and is used as a food preserv

OH Cl Cl

OH OH Reagents

OR

Synthons OH

Reagents Eletrophilic Aromatic Substitution Friedel-Craft alkylation or acylation

C-C Cl

NOT SUITABLE Problems: 1. Rearrangement of alkyl for more stable carbocation. 2. problem of polyalkylation

Synthesis O O O FGI C-C Cl

SUITABLE Nucleophilic Aromatic Substitution

SN1 for nucleophilic aromatic substitution: Diazonium Chemistry

X NH2 X Reagent

+ X OH H2O OR ROH CN CuCN Cl CuCl

NH + Br CuBr 2 N2 X NaNO2/HCl -N2 I KI Ar ArH

H H3PO2

Addition-Elimination

F Cl Br I

X Nu O2N O2N O2N O2N >> ∼ >> O2N O2N Nu- + X- More reactive Less reactive Aromatic Substitution Retrosynthesis of Trifluoralin B Herbicide

N Cl Cl Cl Cl

O2N NO2 O2N NO2 C-N FGI FGI C-Cl

CF3 CF3 CF3 CCl3 CH3 CH3 Retrosynthesis of biphenyl derivative

COOH CN NH2 NH2 NO2

Cl Cl Cl

FGI C-C FGI C-N Aromatic Substitution The use of removable group to control selectivit

Retrosynthesis of Problem of Local anaesthetic Regiocontrol

Synthetic Route to Propoxycaine

Solution: ntroduction of a temporary group hat will be removed at a later stage of the synthesis Aromatic Substitution The importance of order of events- disconnection Retrosinthesis of Dinocap

hex (Fungicide) hex

OH O HO C-O + O O O2N NO2 O2N NO2

hex

OH OH OH C-C 2x C-N Good disconnection- Correct order of events O N NO O2N NO2 2 2

hex hex

OH OH OH 2x C-N C-C Poor disconnection- Wrong order of events O2N NO2 Para position not blocked to force alkylation ortho One Group and Two Groups Disconnection One Group C-X Disconnection For compounds consisting of two parts joined by a heteroatom (X), disconnet next to the heteroatom. This guideline works for esters, amides, ethers, sulfides etc. O Retrosynthesis of HN NH2 NO2 Propanil Weed killer C-N FGI

Disconnection Cl Cl Cl Cl Cl Cl Cl Cl

Synthons Reagents Cl S Cl SH + Cl Cl C-S + S Disconnection Retrosynthesis of Cl Cl Chlorbenside + S Cl Cl Cl One Group and Two Groups Disconnection Chemoselectivity Chemoselectivity arising from two groups of different reactivity. The preferential retrosynthetic route should avoid chemoselectivity problems. In pratice, this means that one should disconnect reactive groups first. To solve chemoselectivity problems, it is very often critical to choose carefully reaction condictions for the foreward synthetic step.

O O NR2 O OH O OH Retrosynyhesis of I

Cyclomethycaine C-O C-O (anaesthetic) Disconnection Disconnection +

O O OH

Chemoselectivity

O OH O O O OH O O NR2 Synthesis of

Cyclomethycaine excess base SOCl2

HOCH2CH2CH2NR2

OH O O O

pKa phenol ~ 10 Both groups ionised pH> 10 pKa ~ One Group and Two Groups Disconnection Chemoselectivity

Retrosynthesis of () O

HN NH2 NO2 C-N C-N Disconnection FGI Disconnection

OH OH OH OH O Synthesis of Paracetamol NH2 HN More Nucleophilic

NH2 NH2

1.HNO3/ H2SO4 Ac2O

2. H2 Pd/C

Under conditions that OH O- OH OH OH pKa phenol ~ 10 keep phenol unionised pKa aniline ~ 30More Nucleophilic Two Groups C- X Disconnection 1,1-Difunctionalised compounds Example 1

Cl 1,1 diX HO OH Cl + OO acidic conditions O

Example 2 R FGI R 1,1 diX RCHO

H N COOH NH3 HCN 2 H2N CN Strecker Synthesis

Example 3

OH OH CN OH O NH2 FGI + 1,1 diX CN + KCN/H

a1 d1 Two Groups C- X Disconnection 1,2-difunctionalised compounds

ALCOHOLS 1,2 diX O NR2 HO HO NR2 a2 Important synthon Reagent is epoxide Example 1: Phenyramidol ()

1,2 diX Ph O Ph + + N N HN N H2N N H OH Ph OH Example 2: (beta-blocker reduces blood pressure)

O N O OH H O OH O 1,2 diX

Cl Epichlorhydrin Propranolol allows for two possible 1,2-diX readily available but it is best to disconnect the more reactive amine group first. Two Groups C-X Disconnection 1,2-difunctionalised compounds

CARBONYLS O 1,2 diX O O Nu Nu Cl R R R a2 Important synthon Reagent

N O O O N Cl 1,2 diX Reagent

N

HN k rel Note: α-chloro or bromo highly reactive electrophiles Me-Cl 200 and Control of mono-versus polyhalogenation. iPrCl 0.02 allylCl 80 920 MeOCH2Cl 10000 PhCOCH2Cl Two Groups C- X Disconnection 1,3-difunctionalised compounds

CARBONYLS O 1,3 diX O O Nu R Nu R R a3 Important synthon Reagent Example 1: Atropine (Muscle relaxant)

O O

1,3 diX Ph Ph N O

Ph Reagent

N H Two Groups C- X Disconnection 1,3-difunctionalised compounds

NITRILES

FGI O O

CN NH2

1,3 diX

OH + N Protecting Group Chemistry To avoid if you can…Each protection event adds two steps: protection-deprotection Synthesis requiring protecting group chemistry O

Br C-Br HO FGI HO HO

HO HO HO O

Synthesis: Br HO HO HO LiAlH4 Br2 O

HO HO HO HO

Revised Synthesis: Side-product Br2 ia also an oxydant O

HO O HO acetone O LiAlH4 Br2 pTosOH HO O O HO + H /H2O

Br HO

HO Amines and One Group C-C Disconnections Synthesis of secondary amines O FGI N + NH2

O HN or

FGI COCl HN + H2N

Retrosynthesis of Fenfluramine ( CNS)

NHEt NHCOMe NH2 FGI C,N-amide

F3C F3C F3C

FGI Reagent for reductive amination: Carbonyl dervative, amine and NaBH4 NaOAc/HOAc pH 6 O NOH

F3C F3C Amines and One Group C-C Disconnections

Synthesis of primary amines

These targets are not conveniently prepared from unsubstituted imines [unstable] or primary amides.

Alternative and better solutions are available and include: • the reduction of cyano group • the reduction of azido group • the reduction of oximes • alkylation and reduction of nitro compounds • the Ritter reaction followed by hydrolysis • the Gabriel synthesis Amines and One Group C-C Disconnections The synthesis of amines is slightly more complicated in comparison with the synthesis of e.g. ethers or sulfides because the product of an N-alkylation is at least as reactive as the starting material, therefore leading to complex reaction mixtures. X C-N + N R2 R NH Bad disconnection H 1 2 R2 The problem of polyalkylation X X X + R2 R2 R2 R1 NH2 R1 N R2 R1 N R2 R1 N R2 - H X R R Secondary amine 2 R2 2 More reactive than primary amine The solution: FGI prior to disconnection Suitable FGI involved amides, imines or oximas. H H N R LiAlH N R1 RNH2 R1COCl 1 4 R R

O H LiAlH N R1 RNH R1COR2 4 2 N R1 R R or NaBH3CN R2 R2 Amines and One Group C-C Disconnections

Example 1 AMINES

NH2 FGI C C-C - N + CN Synthons

Reagent for reduction of cyano into amine is LiAl H4 Br + NaCN or KCN Example 2 Reagents

OH OH OH FGI 1,2 diX O NH2 NH2 R R R R

Reagent for reduction of azide into amine: PPh3 + NaN3 Example 3

2x alkylation H2 cat R1CH2NO2 R1R2R3CNO2 R1R2R3CNH2 Amines and One Group C-C Disconnections AMINES Example 4 Ritter Reaction

MeCN/ H+ Hydrolisis R1R2R3COH R1R2R3CNHCOCH3 R1R2R3CNH2

+ Ritter Reaction: VIA CARBOCATION R1R2R3C

Example 5 Gabriel Reaction

O O O O RNH2

NH3 KOH/ EtOH NH O NH NR then NH2NH2 NH RBr O O O O Amines and One Group C-C Disconnections One Group C-C Disconnection

SYNTHONS REAGENTS

R1 R1 OH OH 1,1 CC - R RMgBr + R1COR2 R2 R2 R3

OH OH O 1,2 CC RMgBr + R- R R1 R1 R1

O O 1,2 CC + R RBr + R1COMe

R R1 R1

OH 1,3 CC OH - R RMgBr/ CuX + CH2=CHCOR1 R R1 R1 Amines and One Group C-C Disconnections One Group C-C Disconnection- Alcohols

1,2CC Disconnections leading to alcohols

O 1,2 CC + PhMgBr Ph Ph OH OH Reagents

Example

1,2 CC O FGI

OH OH Br OH

1,1 CC

MgBr +

O

Reagents: PBr3 or the Apple Reaction [PPh3 /CBr4] Amines and One Group C-C Disconnections One Group C-C Disconnection- Alcohols 1,1CC Disconnection leading to alcohols

OH 1,1 CC OEt + 2eq MeMgBr

O

Retrosynthesis of Pirindol- Muscle Relaxant

NH 1,1 CC 1,3CX N OEt N OH OEt

Ph Ph O O 1,1CC Disconnection leading to carboxylic acid Synthons Reagents OH 1,1 CC MgBr + CO2 COOH CO2 O COOH NaCN Amines and One Group C-C Disconnections One Group C-C Disconnection- Carbonyl Compound as Target

1,1 CC 1) The use of ester and Grignard as double O O 1,1CC addition will generate the

R 1 R2 R1 R2 2) The use of less reactive organocadmium Synthons like R1CdR2

Alternative routes are: ketones from nitriles,from acids and from Weinreb amides

1,2CC COOEt COOH 1,2CC Br COOH COOEt Example: Br O

O O EtO O Synthons Reagents Amines and One Group C-C Disconnections One Group C-C Disconnection- Carbonyl Compound as Target

1,3CC R 1 R R 1 R R + RMgX/CuI

O O O

OH O Example: O FGI 1,3 CC

a3 +

COOEt COOEt COOEt Synthons Keys aspects for the synthesis: • organocopper chemistry O O • stereoselectivity of Michael Hagemann’s Ester addition and reduction O

MgBr/CuI O O

COOEt COOEt COOEt Reagents Synthesis and Use of alkenes and Alkynes

OH FGI Ph Synthesis of R Ph Ph Alkenes R or Ph via elimination FGI Ph EtO R R + PhMgBr HO Ph 2 x 1,1 CC O

Synthesis of Alkenes via Wittig Olefination + PPh3 base phosphorus Ylide Wittig Reagent R1CH2Br R1CH2PPh3 R1CHPPh3 Phosphorus Ylide Br-

R CHPPh Wittig Reaction 1 3 + R2CHO R1CH=CHR2 + OPPh3

Decision making: PPh3 + O=CH2

O + Ph3P=CH2 Synthesis and Use of alkenes and Alkynes

Ph3P O this approach may not lead Elimination or to single geometrical isomer Wittig Olefination? Problem of elimination: product selectivity + OH OH or OH OH +

Stereochemistry of the Wittig E/Z geometry is a function of theReaction structural features of the phpsphorus ylid

STABILISED YLIDE E ALKENES

UNSTABILISED YLIDE Z ALKENES O PPh O O stabilised ylids R 3 Horner-Wadswoth- R PO(OEt) 2 Emmons variant

PPh unstabilised ylids R 3 Synthesis and Use of alkenes and Alkynes Stereochemistry of the Wittig Reaction E/Z geometry is a function of the structural features of the phosphorus ylid Z selective Wittig IRREVERSIBLE PPh3 Ph PO R PHPh O 3 3 + R'CHO R' R R' R R' R E selective Wittig REVERSIBLE

Ph3PO

EtOOC R' SLOW R' R O PPh EtO 3 + R'CHO

Ph3PO R FAST R' EtOOC R' oxaphosphetane formation is reversible Synthesis and Use of Alkenes and Alkynes Synthesis of E,E or E,Z Diene

Solution needs to take into account E,Z or E,E geometry of the diene

Wittig E-stabilised ylid + O PPh3

Wittig O Z-unstabilised ylid PPh3 +

Synthesis Alkenes upon reduction of Alkenes

For Z isomer Hydrogenation [Lindlar's catalyst]

For E isomer Na/NH3 reduction

Revision: Mechanism of Na-ammonia reduction SET - origin of E selectivity Synthesis and Use of Alkenes and Alkynes Problem for trisubstituted alkenes: Control over E/Z geometry

One solution to the problem: Synthesis involving a cyclic intermediate

OH OH O

OH Double O O FGI OEt FGI OEt

OEt OEt

Revise Birch reduction: the Mechanism and the issue of Product Selectivity Synthesis and Use of Alkenes and AlkynespKa and key transformations R H pKa 25

R Na R H R MgBr + RH

RX R R alkylation

OH O R R addition onto carbonyl derivatives O R R epoxide ring opening OH R Conversion of terminal Alkynes into Carbonyl Derivatives

2+ O R H Hg / H2SO4 R Me O O H Me d1 H2C d2 t-hexyl2BH R H H H2O2/ NaOH R O Synthesis and Use of Alkenes and Alkynes

Example 1

O + CH2=CHMgBr

OH or acrolein readily available O MgBr

FGI FGI OH Br OH OH

Example 2

O FGI HO FGI HO 1,1 C-C + H Synthesis and Use of Alkenes and Alkynes Multistriatin Retrosynthesis

Br O 1,1-diX HO 1,2-CC + HO O O O OH OH

Br HO FGI Me OH HO HO HO OH OH OH

Reagents Me OH 1,2-CC OH O MeMgBr HO OH HO OH HO OH

O FGI FGI HO HO OH HO OH OH Two Group Disconnections 1,3-, 1,5- and 1,2- Difunctionalised Compounds • 1,3-Dicarbonyl Compounds and their derivatives Synthons Reagents O O O O O O

R R R d2 a1 R EtO

O O O O O

2 EtO EtO d2 a1 EtO Note: Mechanism of Claisen condesation • Example 1: Synthesis of Pival [Rat Poison] O O

O O

+ O EtO tBu tBu

O O O

O O O tBu COOEt O tBu O tBu COOEt COOEt

O Two Group Disconnections 1,3-Difunctionalised Compounds O O O OEt O COOEt COOEt • Example 2 + EtO OEt B A • A and B are the two possible disconnections O O • Example 3 Ph OCOR • B corresponds to the C-C NH2 + Dickmann cyclisation Me N N unstable

Me FGA Add a group!

O

COOEt EtOOC COOEt COOEt

NH2 + Me N N

Me Me • Example 4 Route to symmetrical ketones O O O

COOEt COOEt Add a group! OEt FGA R R R R R R Two Group Disconnections 1,3-Difunctionalised: β –Hydroxycarbonyl and α,β -Unsatured carbonyls • Example 1

O OH O

N OH OH O • Example 2 Oxanamide (tranquilliser)

O O FGI FGI C-N CHO

CONH2 COOH CHO

• Example 3 Doxpicomine (analgesic) O OH COOEt COOEt

N O N OH N N COOEt COOEt C. O acetal FGI H N N N N H3C CH3 H3C CH3 H3C CH3 H3C CH3

COOEt N COOEt O Two Group Disconnections 1,3-Difunctionalised Compounds – Amino alcohols • Reduction of nitriles O R R' HO R' R' HO reduction R CN CN C-C formation R' NH2 R' R' R Example Venlafaxine (Antidepressant) MeO MeO MeO MeO

Me CN CN MeO N NH2 HO HO HO O Me Br

• Mannich Reaction

R' R' R' O FGI

HO NR2 O NR2 O NHR2 R R R Example Clobutinol (Cough Medicine)

O MgBr H N OH N O N O Two Group Disconnections 1,3-Difunctionalised Compounds – Summary

O OH O O O ALDOL and Variants FGI R R' R R' R R'

O O O O CLAISEN and Variants R OEt R OEt OEt

R' R' R' O FGI MANNICH and Variants HO NH2 O NH2 O RNH2 R R R

R' R' R' CN FGI CN HO NH2 HO O R NITRILE and Variants R R Two Group Disconnections 1,5-Difunctionalised Compounds • 1,5-Dicarbonyl Derivatives

O O O O O 1,5diCO

d2 a3 Example O O O O

O Add a group! O OEt + COOEt OH OEt

COOEt Example Rogletimide (Sedative)

N N O O N O O N O O N O H OEt OEt NH2 OEt NH2 Two Group Disconnections 1,5-Difunctionalised Compounds • Robinson Annulation O O O O

1,5 diCO

O O O O O O OH • Synthesis of Coccinelline COOMe O

N FGI N O O CH(OMe)2 CHO

CH(OMe)2 CHO COOEt

COOEt O • Synthesis involving an intermediate featuring a 1,5-Difunctionality

FGI H N H N O 2 2 H2N MeNO NH NO + 2 2 FGA 2 pKa = 10

1,5 diCO O O

N N Two Group Disconnections 1,2-Difunctionalised Compounds • 1,2-Diols via alkenes OH O R'

R' FGI R' FGI R R R PPh3 OH • 1,2-Diols via cyanhydrins Cl Cl Cl Cl O FGI CN OH OEt OH OH OH O • α-Hydroxyketones via benzoin condensation O O Ph Ph Ph Ph Also Revise: acyloin condensation d1 OH a1 OH • α-Functionalisation of carbonyl compounds OH O Ph PhOC Ph Ph

N N Diphepanol PhOC PhOC spasmolytic Br Two Group Disconnection 1,4-Difunctionalised Compounds: Strategy 1 O O

R2 or R2 R1 R1 O OH

O O O X a2 R2 R2 R2 R1 R1 R1 O d2 O O Example: Precursor of antibiotic methylenomycin

O O O O O Br O COOEt COOEt OH COOH COOEt COOEt O O O METHYLENOMYCIN O base cyclisation COOEt O O Synthesis: Br COOEt COOEt O Two Group Disconnection 1,4-Difunctionalised Compounds: Strategy 2

O O O a2 R2 R2 R2 R1 R1 R1 O OH d2 OH Example:

COOH O CH2(COOEt)2 OH 1,4-Difunctionalised Compounds: Strategy 3

Reagents O O O d1 R2 R2 R1 R1 R1 O a3 O With nitrile or nitro derivative Two Group Disconnection 1,4-Difunctionalised Compounds: Strategy 3 Nitrile Ph Ph Ph Ph CN

O O HOOC COOH N NC COOH COOH H

Synthesis: H+/H O Ph NaOEt Ph CN 2 PhCHO + NCCH2COOEt Then MeNH2 O Then KCN NC COOEt O N H 1,4-Difunctionalised Compounds: Strategy 3 Nitro base NO2 O R NO R2 R2 1 2 R2 R1 R1 O O O O O O NO2 FGI

OH O O Two Group Disconnection 1,4-Diols and derivatives: Strategy 4 Alkynes OH HO OH O O R2 R1 R R R1 R2 OH 1 2 O Example: FGI OH HO O COOH O R OH R

R

HO O

R R 1,4-Difunctionalised Compounds: Strategy 5 Allylation

O FGI Br

CO2Et CO2Et CO2Et Two Group Disconnection 1,6-Difunctionalised Compounds: Ozonolysis “Reconnection” is a reliable strategy for synthesising 1,6-difunctionalised compounds since the cyclohexenes required for the oxidative cleavage are easily accessible O OH HO “Reconnection” Example: O O O O 1 reconnect 6 O

1,6-Difunctionalised Compounds: Baeyer-Villiger

O O O OH reconnect OMe OMe O

O O “Revision”: mechanism of Baeyer-Villiger reaction and migratory aptitude Two Group Disconnection 1,6-Difunctionalised Compounds

“Reconnect” O or Br O O O EtO

O EtOOC Synthesis O EtO COOEt Br O O HCl O Then O O O Polyphosphoric EtOOC COOEt acid Two Group Disconnection 1,6-Difunctionalised Compounds O O O “Reconnect” EtO O

Retrosynthesis- Solution 1 O O O O EtO O CN Br COOEt O O

COOEt COOEt COOEt COOEt Retrosynthesis- Solution 2 O OH OH EtO O EtO O

E/Z O Dithianes are d1 Reagents Acyl anion equivalents Which dithiane?

BuLi BuLi SS SSbut S S S S S S Li Li Not stable Example

Br Br

O O O O O O

Revision: pKa and mechanism/reagents to transform dithianes into

aldehydes or ketones HgCl2, oxidation or alkylation Ring Synthesis Three-membered rings

• Three-membered rings

a OEt O Mechanisms O O Epoxidation b O O OEt : Ring closure OEt

OEt Synthesis a: H2O2, base O O O

Cl O OEt EtO- /acetone Synthesis b:

OEt Ring Synthesis Three-membered rings

• Three-membered rings

O O O O C-C FGI + O

R Br R HO R EtOOC R

• Three-membered rings

Br

Br O O O Br COOEt O : + O HO Br EtOOC HO Ring Synthesis Four-membered rings

O O R R R

BuLi R1 R2 S S S R1 R2 R R R

R 1 O R + O H R2 S

R R1 R1 R O 2 R2 Ring Synthesis Five-membered rings

• Five-membered rings: chemoselectivity ozonolysis, control over recyclisation step

O O Limonene Natural Product

O • Acyloin condesation as a key step for the synthesis of 5-membered rings O O O O O EtO EtO

OH OH OH O O

OEt OEt

Corylone NMe2 NMe2 Spicy coffee O

COOEt • Favorskii Ring Contraction Ring Synthesis Six-membered rings

• Six-membered rings via Diels-Alder Cycloaddition

+

O O • Six-membered rings via complete Reduction

O OH OH

• Six-membered rings via partial Reduction

O O MeO MeO

O O Synthesis of Nuciferal Bisbolane type sesquiterpene isolated from wood oil of Torreya Nucifera

BrMg

OH O A ? Nuciferal O STAGE 1 O CHO O

STAGE 2 ?

1. Suggest a synthesis for the starting material A 2. Suggest reagents for stages 1, 2 and 3 3. Draw out the retrosynthetic ? analysis with suitable labelling STAGE 3 for all retrosynthetic steps CHO 4. Which synthon does the Nuciferal starting material A represent? CHO Synthesis of Coccinelline

Ladybird compound COOMe O

N FGI N O O CH(OMe)2 CHO

CH(OMe)2 CHO COOEt

COOEt O

H O H OMe OMe O OMe OMe NaOMe MeOH/H+ MeOOC COOMe CH2=CHCHO MeO OMe then decarboxylation NaOMe COOMe

MeOOC MeOOC OMe O OMe OMe NH2 OMe

NaCl, DMSO NH4OAc Krapcho MeO OMe NaB(CN)H3 MeO OMe dealkoxy- decarboxylation H

O NH O H 2 N O pH 5, H2O H MeO2C CO2Me N O O H H H MeOOC COOMe

OH MeOOC COOMe N N O

COOEt MeOOC COOMe COOEt O O Retrosynthesis of Terfenadine

Ph NaBH Ph 4 Me H Me Ph C N(CH2)3 C C Me Ph C N(CH2)3 C C Me Me Me OH OH FGI OH O

K2CO3 DMF Antagonist H1 Δ

Ph Ph C OH O Me

Cl (CH2)3 C CMe Me N H

1) PhMgBr FGI, AlCl3 RETRO ACILAZIONE 2) NaOH, BuOH RETRO GRIGNARD CHCl3 FRIEDEL CRAFT Δ

CO2Et CO2Et ClCO2Et Cl Me TEA (CH2)3 CMe COCl Me

N FGI N H COOEt Retrosynthesis of Minaprine -Antidepressant

5 O 4 FGI FGI 6 N Ph N Ph O 3 Ph Cl H POCl NN RNH , Δ 3 NN 1 2 2 NN Δ H

FGI Br, AcOH, Δ

O FGI 1 Ph O Ph CO H 2 NH2NH2 NN 2 Δ H

FGI RETRO ACILAZ. 1 FRIEDEL - CRAFT

2 AlCl3 CH2Cl2 PhCO O O Ph O

HO CN OR Ph C H2CCCO2R O N CH3 O O

O Retrosynthesis of (+)-Norgestrel 19-Nor Steroid

OH O OH H H

RETRO 17 FGI ETINILAZIONE H H H H

H+, Δ 1) H H H H LiC CH H H 2) NH4Cl / H2O O MeO MeO

1) Li / NH2(l) FGI 2) Al (OiPr) , Δ RETRO 3 BIRCH

O H OAc OH RETRO KNOEVENAGEL FGI FGA, FGI *

* 1) H2,Pd / CaCO3 H 1) Ac2O, Py 2) KOH, MeOH O 2) TosOH, Δ MeO MeO MeO

RID. FGI ENZ.

O O RETRO TORGOR a d d a

O KOH, MeOH Δ OH O

MeO

MeO Retrosynthesis of Avenaciolide

C H O O 8 17 C8H17 O O C8H17 O O O C8H17 OH RETRO FGI METILENAZ. HH H H

a d O O O O H2C

O O O O

FGI CHO C8H17 O C6H13 O O RETRO WITTIG O Me FGA O Me O Me O O Me O Me Me RO2C RO2C RO2C

CON

Me O Me O D-GLUCOSIO

HO Me O Me O HO O O FGI HO RETRO O O FGI WITTIG OH O Me O Me FGA OH OH O Me H O O O Me Me OH O CO R Me 2 RO2C Retrosynthesis of Pentenomicina

d Me O O O O a CHO RETRO FGI FGI ALDOLIC

BuO AcO OO OO HO OH OH BuO OO (-)-Pentenomicina Me Me Me Me Me Me

FGI

Me O OMe TsO OMe O TsO O H C O 2 Me O O

O Me BuO OO O Me BuO OO BuO OH O Me BuO OH O Me Me Me Me Me

FGI

Me O Me Me O

RETRO RETRO Me O Me O Me O HENRY O NEF O O D-GLUCOSIO

d a OHC O Me O Me O Me O OH O Me O2N OH O Me O Me Retrosynthesis of 11-Deoxy-8-aza-PGE1

O O O (CH ) -CO R O (CH ) -CO R 2 6 2 (CH2)6-CO2R 2 6 2 (CH2)6-CO2R RETRO N N FGI N WITTIG FGI N

C H C5H11 5 11 CHO 1) K CO CO2R Zn(BH4)2 2 3 2) ClCO2Et, TEA 11-Deoxy-8-aza-PGE1 R = Me, H OH O NaBH4 . 3) CrO3 2Py

RX NaH

O NH2 O FGI Δ NH HO NH CO2H H CO H CH2N2 O FGI 2 H CO2R (R)-Acido Glutammico

Baraldi,P.G. et al. J.Org.Chem.,1979,10,1734 Retrosynthesis of ±4 –oxocyclopentane- 1,2-dicarboxylic acid

O FGA O FGI 1 1 RO2C CO2R CO R RETRO 2 DIECKMANN CO2R Δ, DMSO 160°C CO R 2 RO2C 2 CO2R

HO2C CO2H Δ RO2C CO2R

2

RETRO Δ MICHAEL

a CO2R CO R Br 3 2 3 CO2R CH2 CH2 d CO R CO R 2 2 EtONa CO R RO2C 2 RO2C etrosynthesis of cis-3-oxabicyclo[3.3.0]octan-7-o

RETRO 1 FGA DIECKMANN RO C O O 2 O O O 1 RO2C Δ EtONa, Δ cis-3-Ossabiciclo 3.3.0 -Ottan-7-one RO2C

1) CrO3 FGI, FGI 2) CH2N2

FGI RETRO OZONOLYSIS OTos OHC O O OH OHC TEA O3

TosCI TEA FGI O O RETRO FGI DIELS - ALDER OH O O OH LiAlH 4 Δ O O Baraldi,P.G. et al.,Tetrahedron,1984,40,761 Retrosynthesis of Diidroiasmone

O O

RETRO O ALDOLIC FGA

OH- Fe(CO)5 O - O OH / H2O

1) H2, PtO2 2) PhCOCl, Py 3) NaBH4 4) H+

O O O OO

NO2 NO2

PhNCO (CH2OH)2 TEA + 1-Esino H N O TMG

O

CH3NO2 Baraldi,P.G. et al..J.Org.Chem.,1979,44,105 Retrosynthesis of PGF2α

HO THPO

CO2H CO2R FGI

HO THPO PGF2α HO O

RETRO WITTIG

FGI

O O

O O O

CO2R FGI 1-Eptino a d

NO2 NO2 THPO C5H11 THPO THPO N O

RETRO MICHAEL

O O O O CO2R CO R 2 CO2R N CO2R CHO

FGI FGI FGR CO2Me THPO HO Br Synthetic scheme of PGE2α

O 1) CHO O O + CO R H H2O N 2 NBS CO2R CO R Δ CO2R BuOH, Δ 2 Diossano CCl4, Δ 2) H+ Δ Br

O

O O O O CH NO t DHP 3 2 LiAlH(O But)3 PhNCO CO2R CO R CO2R 2 TMG, 0°C pTsOH THF, Δ 1-Eptino

NO2 HO THPO THPO NO2 THPO

OH O THPO 1) Na, NH (l) DIBAH, -78°C O 1) Wittig 3 O 2) Si O CO2H 2 1-Eptino 3) NaBH4 2) DHP, pTsOH PGF2α 4) H+ C H C H 5 11 5 11 THPO NO THPO NO THPO NO Baraldi,P.G. et al. Tetrahedron,1987,43,4669 Retrosynthetic Route to Geiparvarin

O O 3 4 2 FGI 5 OOO OH OOO O 1 O AcOH, 0°C

Geiparvarin

AcOH,0°C FGI

N TMSO O FGI NH2 O

OOO TMSO O OO

Mo(CO)6 Δ

PhNCO RETRO TEA CICLOADDIZIONE 3+2 DIPOLARE

H

H OOO HO OO FGI NO 2 OH TMSO

DEAD FGI Ph3P

NO2 O CH3NO2 HO Baraldi,P.G. et al. Tet.Lett.1985, 43, 531 Retrosynthesis of Sarcomycin

O O

FGI FGA, FGI O O FGI O O O H+, RT, 5d O CH OH O CO2H + 2 H+, RT, 6 h. CrO3, H HC O 0°C 2 O O Sarcomicina O

1) O , -78° 3 FGI 2) NaBH4

O O

O O O RETRO DIELS-ALDER FGI Br

Δ, 3 d MED CO2R TosOH CO2R

CO2R

Baraldi,P.G. et al. J.Chem.Soc.Chem.Com.1984,1049 Retrosynthesis of Carbaprostacycline

CO2H

O

OO

FGI FGI

RETRO WITTIG C5H11 C5H11 C5H11

OTHP OTHP OH OH OTHP O Carbaprostacycline RETRO WITTIG

O OO OO

FGI FGI

CO2R CHO CO2R O O OTHP Retrosynthesis of a intermediate for Carbaprostacycline

O O O RETRO OH RETRO CLAISEN MICHAEL FGI

K2CO3 1) Im2CO Jones 2) CO2Et CO2R CO2R CH2 CO2H CO2H O O CO2H Mg(OEt)2

NaOH FGI

RETRO BAYER-WILLIGER O O NaOH, H O 2 2 O

Baraldi,P.G. et al. J.Org.Chem.,1980,45,4776 Synthesis and Retrosynthesis A2B O O R N H I NH2 HN N N N N N N H N N H N N N O H N N N O N O O O O O O NH2 OO Isopentylnitrite, O O OH OH 1) R NH CH2I2 2) TFA, H2O R = Ph hA1 Ki=8.5nM 1) SOCl hA2A Ki= >1000nM 2 2) EtNH2 hA2B EC50= 7.3nM hA3 Ki= 38.4nM

NH2 NH2 N N N N NH2 N N N N N N HO HO O O O N N HO O p-TsOH, O O KMnO4, O O 2,2-dimethoxypropane KOH OH OH

P. G. Baraldi et al., Bioorg. Med. Chem., 15, 2007, 2514-2527 Synthesis and Retrosynthesis A2B Antagonists O H hA K >1000nM N Cl 1 i N O hA2A Ki >1000nM N hA IC = 7nM O N N N 2B 50 N H hA3 Ki >1000nM

O NH N 2 1: , EDC O N NH2 O

OEt 2: NaOH

Cl O N N + O N N2-alkylated product N N KOH O H OH O HN

OEt Cl N EtONa, N p-Cl- H

P. G. Baraldi et al., Bioorg. Med. Chem., 16, 2008, 2419-2430 Synthesis and Retrosynthesis of sulphur Duocarmycins X TEMPO

NBoc NBoc NBoc

S DBU S Zn powder S TEMPO, 14 (2 steps) O 10 (Me3Si)3SiH OR OBn R = Bn, X = OH, 11 PPH3, CCl4 Chiral column R = Bn, X = Cl, 12 Pd/C, H CO NH N R = H, X = Cl, 13 2 2 4 O I X

NBoc R COOEt

S S S NaH, allyl bromide LiOH 9 AcONa, Ac2O (2 steps) OBn OBn OR R = COOH, X = H, 6 R = Ac, 3 DPPA K2CO3 R = NHBoc, X = H, 7 R = H, 4 NIS BnBr R = NHBoc, X = I, 8 R = Bn, 5

COOEt CHO

S S 1 2 COOH t-BuOK, Baraldi P.G., Boger D.L., et al. diethyl succinate JACS., 2007, 129, 14092-14099