Part 177—Indirect Food Additives: Polymers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Greenchem Industries Chemical and Solvent Product List A-Z
GreenChem Industries Chemical And Solvent Product List A-Z 1,4-Butanediol (BDO) Formic Acid, 80%, 85%, 90%, 95% N-Butanol 2-Ethylhexanol (2-EH) Gamma Butyrolactone (GBL) N-Butyl Acetate (BUTAC) 2-Ethylhexyl Acrylate (2-EHA) Glacial Acetic Acid (GAA) N-Heptane 911P Glutaraldehyde 50% N-Methyl Pyrrolidone (NMP) Acetic Acid Glycerin USP K & Tech Grade N-Propanol Acetone Glycol Ether DB N-Propyl Acetate Acetonitrile Glycol Ether DE Neopentyl Glycol (NPG) Adipic Acid Glycol Ether DM Nitromethane Alpha-Methylstyrene (AMS) Glycol Ether DPM Nonyl Phenol Asphalt Cutback Glycol Ether DPM Acetate (DPM Acetate) NP-9, NP-10, NP-12 Benzoic Acid Glycol Ether DPnB Odorless Mineral Spirits (OMS) Benzyl Alcohol USP & TECH Glycol Ether DPnP Oxalic Acid 99.6% Benzyl Chloride Glycol Ether EB P-Chlorbenzotrifluoride (PCBTF) Boric Acid Glycol Ether EEP Perchloroethylene (PERC) Butyl Acrylate Glycol Ether EM Phenol 85%, 90%, 99% Caustic Potash 90% Glycol Ether EP Phthalic Anhydride Glycol Ether EPH Polyethylene Glycol (PEG) Caustic Soda Flakes & Beads Glycol Ether PM Propylene Carbonate (PC) Citric Acid, USP Kosher Glycol Ether PMA Propylene Glycol USP (PG USP K) Cyclohexane Glycol Ether PnB Propylene Glycol Industrial (PGI) Cyclohexylamine Glycol Ether PnP Sebacic Acid Cylcohexanone Glycol Ether TPM Secondary Butanol (SBA) D-Limonene Glycolic Acid 70% Sodium Laurel Sulfate (SLES) 28%, 60%, 70% DB Acetate GreenCool (Inhibited Glycols) Solv 100 Diacetone Alcohol (DAA) Hexane Solv 150 Dibasic Ester (DBE) Hexylene Glycol (HG) Solv 200 Dibutyl Phthalate (DBP) Hydrochloric -
Business Guidance on Phthalates
Business guidance on phthalates How to limit phthalates of concern in articles? November 2013 Danish branch of EPBA, Brussels This guidance has been prepared on the initiative of the Danish EPA and organisations, DI (the Confederation of Danish Industry), the Danish Chamber of Commerce, DI ITEK (the Danish ICT and electronics federation for it, telecommunications, electronics and communication enterprises), BFE (the Danish Consumer Electronics Association), Batteriforeningen (the Danish branch of the European battery association EPBA), ITB (the Danish IT Industry Association) and FEHA (the Danish Association for Suppliers of Electrical Domestic Appliances) in a collaboration between the Danish EPA and representatives from the organisations. The guidance applies to companies marketing articles to either private or industrial users in Denmark. The target group is buyers in Danish companies that import or act as commercial agents, intermediaries or retailers, as well as foreign companies that export to Denmark. 2 Content How to limit phthalates of concern in articles? ................................................................... 4 Key to identification of articles with phthalates .................................................................. 8 Facts on phthalates ............................................................................................................................. 10 What should you ask your supplier? .......................................................................................... 11 What are the -
162 Part 175—Indirect Food Addi
§ 174.6 21 CFR Ch. I (4–1–19 Edition) (c) The existence in this subchapter B Subpart B—Substances for Use Only as of a regulation prescribing safe condi- Components of Adhesives tions for the use of a substance as an Sec. article or component of articles that 175.105 Adhesives. contact food shall not be construed as 175.125 Pressure-sensitive adhesives. implying that such substance may be safely used as a direct additive in food. Subpart C—Substances for Use as (d) Substances that under conditions Components of Coatings of good manufacturing practice may be 175.210 Acrylate ester copolymer coating. safely used as components of articles 175.230 Hot-melt strippable food coatings. that contact food include the fol- 175.250 Paraffin (synthetic). lowing, subject to any prescribed limi- 175.260 Partial phosphoric acid esters of pol- yester resins. tations: 175.270 Poly(vinyl fluoride) resins. (1) Substances generally recognized 175.300 Resinous and polymeric coatings. as safe in or on food. 175.320 Resinous and polymeric coatings for (2) Substances generally recognized polyolefin films. as safe for their intended use in food 175.350 Vinyl acetate/crotonic acid copoly- mer. packaging. 175.360 Vinylidene chloride copolymer coat- (3) Substances used in accordance ings for nylon film. with a prior sanction or approval. 175.365 Vinylidene chloride copolymer coat- (4) Substances permitted for use by ings for polycarbonate film. 175.380 Xylene-formaldehyde resins con- regulations in this part and parts 175, densed with 4,4′-isopropylidenediphenol- 176, 177, 178 and § 179.45 of this chapter. -
Hazardous Substances in Plastic Materials
TA Hazardous substances in plastic 3017 materials 2013 Prepared by COWI in cooperation with Danish Technological Institute Preface This report is developed within the project of mapping of prioritized hazardous substances in plastic materials. The report presents key information on the most used plastic types and their characteristics and uses, as well as on hazardous substances used in plastics and present on the Norwegian Priority List of hazardous substances (“Prioritetslisten”) and/or the Candidate List under REACH, by August 2012. The aim of the report is to be a brief handbook on plastic types and hazardous substances in plastics providing knowledge on the characteristics and use of different plastic materials and the function, uses, concentration, release patterns, and alternatives of the hazardous substances, allowing the user to use the report as an introduction and overview on the most important hazardous substances in plastics and the plastic types, they primarily are used in. The development of the report has been supervised by a steering committee consisting of: Inger-Grethe England, Klima- og Forurensningsdirektoratet (chairman) Pia Linda Sørensen, Klima- og Forurensningsdirektoratet Erik Hansen, COWI, Denmark Nils H. Nilsson, Danish Technological Institute The report has been prepared by Erik Hansen, COWI-Denmark, Nils H. Nilsson, Danish Technological Institute, Delilah Lithner, COWI-Sweden and Carsten Lassen COWI- Denmark. Vejle, Denmark, 15. January 2013 Erik Hansen, COWI (project manager) 1 Content English Summary and -
Polyvinylchloride, Phthalates and Packaging
Page 29 | Bulletin 86 | July 2014 Polyvinylchloride, phthalates and packaging Plastics are synthetic resins, are either thermosetting or thermoplastic. Thermoplastic resins can be re-softened by heating, and include polyethylene (PE), polystyrene (PS), polypropylene (PP), and polyvinylchloride (PVC) which is very widely used in disposable medical devices. Polyvinylchloride (PVC) Di(2-ethylhexyl) phthalate (DEHP) Vinyl chloride (CH2=CHCl or chloroethylene) DEHP (sometimes referred to as bis is polymerized by free-radical initiators to (2-ethylhexyl) phthalate) is the diester of open the double bond and to link together phthalic acid and 2 ethylhexanol (Figure 2). vinyl chloride monomers, to form repeating Dr A M Walton units of polymers (Figure 1). Figure 2 The structure of di(2-ethylhexyl) phthalate DEHP. Anaesthesia ST 7, Figure 1 The phthalic moiety is common to all phthalates; University Hospital The chemical structure of vinyl chloride and PVC the pair of symmetrical aliphatic chains depends Southampton on the esterified alcohol PVC is a rigid structure at room temperature. Heating gives the molecules energy, widens the distance between between the molecules and softens the resin. To give PVC flexibility at room and body temperatures, plasticisers Dr J M T Pierce are added non-covalently to the PVC when Consultant Anaesthetist, At room temperature it is a colourless, oil- University Hospital molten and serve as molecular spacers so soluble viscous liquid and is used to form Southampton; RCoA when cooled the polymer has a softness even up to 40% of the mass of the PVC product. Environmental Advisor at room temperatures. The most commonly The annual global production of DEHP is used plasticisers are phthalates. -
Selected Plasticisers and Additional Sweeteners in the Nordic Environment Selected Plasticisers and Additional Sweeteners in the Nordic Environment
TemaNord 2013:505 TemaNord Ved Stranden 18 DK-1061 Copenhagen K www.norden.org Selected Plasticisers and Additional Sweeteners in the Nordic Environment Selected Plasticisers and Additional Sweeteners in the Nordic Environment The report Selected plasticisers and additional sweeteners in the Nordic Environment describes the findings of a Nordic environmental study. The study has been done as a screening, that is, it provides a snapshot of the occurrence of selected plasticisers and sweeteners, both in regions most likely to be polluted as well as in some very pristine environments. The pla- sticisers analysed were long chained phthalates and adipates, and the sweeteners analysed were aspartame, cyclamate and sucralose. The purpose of the screening was to elucidate levels and pathways of hitherto unrecognized pollutants. Thus the samples analysed were taken mainly from sewage lines, but also in recipients and biota, both in assumed hot-spot areas and in background areas. TemaNord 2013:505 ISBN 978-92-893-2464-9 ISBN 978-92-893-2464-9 9 789289 324649 TN2013505 omslag.indd 1 18-02-2013 10:25:36 Selected Plasticisers and Additional Sweeteners in the Nordic Environment Mikael Remberger, Lennart Kaj, Katarina Hansson, Hanna Andersson and Eva Brorström-Lundén, IVL Swedish Environmental Research Institute, Helene Lunder and Martin Schlabach, NILU, Norwegian Institute for Air Research TemaNord 2013:505 Selected Plasticisers and Additional Sweeteners in the Nordic Environment Mikael Remberger, Lennart Kaj, Katarina Hansson, Hanna Andersson and Eva Brorström-Lundén, IVL Swedish Environmental Research Institute, Helene Lunder and Martin Schlabach, NILU, Norwegian Institute for Air Research ISBN 978-92-893-2464-9 http://dx.doi.org/10.6027/TN2013-505 TemaNord 2013:505 © Nordic Council of Ministers 2013 Layout: Hanne Lebech/NMR Cover photo: Image Select Print: Rosendahls-Schultz Grafisk Copies: 150 Printed in Denmark This publication has been published with financial support by the Nordic Council of Ministers. -
Common Chemical Additives in Plastics
Journal of Hazardous Materials 344 (2018) 179–199 Contents lists available at ScienceDirect Journal of Hazardous Materials j ournal homepage: www.elsevier.com/locate/jhazmat Review An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling a,∗ a,∗ b a a John N. Hahladakis , Costas A. Velis , Roland Weber , Eleni Iacovidou , Phil Purnell a School of Civil Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, United Kingdom b POPs Environmental Consulting, Lindenfirststr. 23, D.73527, Schwäbisch Gmünd, Germany h i g h l i g h t s g r a p h i c a l a b s t r a c t • Plastics are important in our society providing a range of benefits. • Waste plastics, nowadays, burden the marine and terrestrial environment. • Additives and PoTSs create complica- tions in all stages of plastics lifecycle. • Inappropriate use, disposal and recy- cling may lead to undesirable release of PoTSs. • Sound recycling of plastics is the best waste management and sustainable option. a r t i c l e i n f o a b s t r a c t Article history: Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipur- Received 22 July 2017 pose, durable and lightweight nature. These characteristics have raised the demand for plastic materials Received in revised form 2 October 2017 that will continue to grow over the coming years. However, with increased plastic materials production, Accepted 7 October 2017 comes increased plastic material wastage creating a number of challenges, as well as opportunities to Available online 9 October 2017 the waste management industry. -
Four Plastics Exempted from CPSIA Third Party Testing of Phthalates
Issue No.: 05/16/TCD Four Plastics Exempted from CPSIA Third Party Testing of Phthalates A Notice of Proposed Rulemaking exempting four plastics from phthalates testing under the CPSIA was approved by the Consumer Product Safety Commission (CPSC) on 9 August 2016. The decision came following a research conducted by the Toxicology Excellence for Risk Assessment (TERA) and other similar researches by the CPSC on the presence of eleven phthalates in four plastics used in children’s toys and child care articles. Once the rule has been approved, manufacturers shall not be required to conduct third-party testing in assuring compliance with the phthalate prohibitions for these four plastics. These four exempted plastics are: ¾ Polypropylene (PP) ¾ Polyethylene (PE) ¾ High Impact Polystyrene (HIPS) ¾ Acrylonitrile Butadiene Styrene (ABS) However, products made from the above plastics must continue to comply with Section 108 of CPSIA in which the “accessible plasticized component parts and other component parts made of materials that may contain phthalates” shall not contain any of the prohibited phthalates in concentration greater than 0.1% in children’s toys and child care articles. The six prohibited phthalates are: CPSIA Section 108 Phthalates Limit Permanent ban for use in children’s DEHP: di-(2-ethylhexyl) phthalate 0.1% toys or child care articles DBP: dibutyl phthalate 0.1% BBP: benzyl butyl phthalate 0.1% Interim ban for use in toys that can be DINP: diisononyl phthalate 0.1% put in the mouth or child care articles DIDP: diisodecyl phthalate 0.1% DnOP: di-n-octyl phthalate 0.1% Phthalates are generally used as plasticizers or softener of certain plastics. -
High Performance Ester Plasticizers
High Performance Ester Plasticizers Abstract Traditional elastomer polymers, such as nitrile, polychloroprene, chlorinated polyethylene and chlorosulfonated polyethylene, have for years used moderate- to low- performance ester plasticizers. However, longevity requirements for rubber articles made from these elastomers have created a need for higher-performance ester plasticizers. With the increasing high-temperature demands required by automotive, other elastomers such as acrylic, high-saturated nitrile, epichlorohydrin and ethylene propylene diene monomer EPDM are replacing the more traditional elastomers. Plasticizers commonly used for the traditional and the high-temperature polymers are extractable, incompatible or too volatile. This paper provides information on plasticizers that are designed for traditional elastomers and high-performance polymers. The test data will include heat aging, extraction by hydrocarbons and low-temperature as molded after aging. The information provided indicates that the permanence of the plasticizer after these various agings is the key to the retention of physical properties. Introduction End uses for elastomer compounds are quite diverse, but they can be loosely categorized as being either general performance or higher performance applications. Each of these performance categories requires a different set of considerations in terms of compounding with ester plasticizers. An ester plasticizer, in its simplest concept, is a high-boiling organic solvent that when added to an elastomeric polymer reduces stiffness and permits easier processing.1 For general performance applications, compounders require moderate performance in several areas without particular emphasis on any one. Some general performance ester plasticizers used in the marketplace today are DOA, DIDA, DIDP, DOP, DINP and other phthalates and adipates made from straight-chain alcohols of 7–11 carbons in length. -
CVS Store Brand Restricted Substances List
CVS Store Brand Restricted Substances List The following ingredients are restricted from select CVS Store Brand Baby & Child, Beauty, Personal Care, Foods, Suncare, Household, and Bottled Spring Water Products. This list is updated annually, in May. Baby & Child Products (non-medicated products, e.g., shampoos, lotions, wipes) California Proposition 65 Banned Chemicals (e.g., Toluene, Multiple Styrene, BPA) ii Formaldehyde 50-00-0 Dimethyl-dimethyl (DMDM) Hydantoin 6440-58-0 Imidazolidinyl Urea 39236-46-9 Diazolidinyl Urea 78491-02-8 Sodium Hydroxymethylglycinate 70161-44-3 Formaldehyde 2-bromo-2-nitropropane-1,3-diol (Bronopol) 52-51-7 and donors Quaternium-15 4080-31-3 Glyoxal 107-22-2 Polyoxymethylene Urea 68611-64-3 5-Bromo-5-Nitro-1,3 Dioxane (Bronidox) 30007-47-7 Methylene glycol (methanediol) 463-57-0 Methenamine 100-97-0 Ethylparaben 120-47-8 Butylparaben 94-26-8 Methylparaben 99-76-3 Propylparaben 94-13-3 Heptylparaben 1085-12-7 Isobutylparaben 4247-02-3 Isopropylparaben 4191-73-5 Parabens Benzylparaben 94-18-8 Octylparaben 1219-38-1 Pentylparaben 6521-29-5 Phenylparaben 17696-62-7 Isodecylparaben 2664-60-0 Calcium Paraben 69959-44-0 Potassium Paraben 16782-08-4 5026-62-0 35285-69-9 Sodium Parabens 35285-68-8 36457-20-2 Hexamidine Paraben Not Found Hexamidine Diparaben 93841-83-9 Undecylenoyl PEG 5 Paraben Not Found Phenoxyethylparaben 55468-88-7 4-Hydroxybenzoic acid 99-96-7 Di-2-ethylhexyl phthalate (DEHP) 117-81-7 Benzyl butyl phthalate (BBP) 85-68-7 Di-n-butyl phthalate (DBP) 84-74-2 Diisodecyl phthalate (DIDP) 26761-40-0 -
Toxicity Review of Diisobutyl Phthalate (DIBP)
identification, that is, a review of the available toxicity data for the chemical under consideration and a determination of whether the chemical is considered “toxic”. Chronic toxicity data (including carcinogenicity, neurotoxicity, and reproductive and developmental toxicity) are assessed by the CPSC staff using guidelines issued by the Commission (CPSC, 1992). If it is concluded that a substance is “toxic” due to chronic toxicity, then a quantitative assessment of exposure and risk is performed to evaluate whether the chemical may be considered a “hazardous substance”. This memo represents the first step in the risk assessment process; that is, the hazard identification step. * This report was prepared for the Commission pursuant to contract CPSC-D-06-0006. It has not been reviewed or approved by, and may not necessarily reflect the views of, the Commission. Page 2 of 2 FINAL TOXICITY REVIEW FOR DIISOBUTYL PHTHALATE (DiBP, CASRN 84-69-5) Contract No. CPSC-D-06-0006 Task Order 012 Prepared by: Versar Inc. 6850 Versar Center Springfield, VA 22151 SRC, Inc. 7502 Round Pond Road North Syracuse, NY 13212 Prepared for: Kent R. Carlson, Ph.D. U.S. Consumer Product Safety Commission 4330 East West Highway Bethesda, MD 20814 July 14, 2011 * This report was prepared for the Commission pursuant to contract CPSC-D-06-0006. It has not been reviewed or approved by, and may not necessarily reflect the views of, the Commission. TABLE OF CONTENTS TOXICITY REVIEW FOR DIISOBUTYL PHTHALATE APPENDICES .............................................................................................................................. -
CAS 84-69-5 Diisobutyl Phthalate (DIBP)
CAS 84-69-5 Diisobutyl phthalate (DIBP) Toxicity The European Union classified DIBP as a reproductive Substance of Very High Concern (SVHC).1 A 2011 study observed decreased testicular testosterone in male rats fed DIBP for 4 days.2 Borch et al. 2006 found male offspring of female rats exposed to DIBP from gestation day 7 to gestation day 20 or 21 had significantly reduced anogenital distance.3 The Chronic Hazard Advisory Panel (CHAP) determined, due to toxicological profile similarities to Dibutyl phthalate (DBP), exposure to DIBP contributes to a cumulative antiandrogenic effect with other phthalates and should be permanently banned in children’s toys and child care articles at levels greater than 0.1 percent.4 In 2017 the CPSC permanently banned DIBP in children’s toys and childcare articles at levels greater than 0.1 percent.5 Exposure The 2015 National Health and Nutrition Examination Survey (NHANES) monitored a metabolite of DIBP in human urine, and the levels appear to be increasing.6 Metabolites of DIBP were detected in the urine of pregnant Danish women in a 2010-2012 study.7 A significant correlation was found between DIBP metabolite concentrations in the urine of Danish children and increased levels of DIBP in bedroom dust and day care centers.8 Other DIBP is used as a substitute ingredient to di-n-butyl phthalate (DBP) due to structural similarities, therefore, its’ presence in products may increase.3 References 1. European Commission, Endocrine disruptor priority list. Retrieved from: http://ec.europa.eu/environment/chemicals/endocrine/strategy/substances_en.htm 2. Hannas, B.R., Lambright, C.S., Furr, J., Howdeshell, K.L., Wilson, V.S., Gray, L.E., Jr.