Bushveld Igneous Complex Drilling Project (BICDP)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
South African Palaeo-Scientists the Names Listed Below Are Just Some of South Africa’S Excellent Researchers Who Are Working Towards Understanding Our African Origins
2010 African Origins Research MAP_Layout 1 2010/04/15 11:02 AM Page 1 South African Palaeo-scientists The names listed below are just some of South Africa’s excellent researchers who are working towards understanding our African origins. UNIVERSITY OF CAPE TOWN (UCT) Dr Thalassa Matthews analyses the Dr Job Kibii focuses PALAEOBIOLOGICAL RESEARCH thousands of tiny teeth and bones of fossil on how fossil hominid Professor Anusuya Chinsamy-Turan is one microfauna to reconstruct palaeoenviron- and non-hominid of only a few specialists in the world who mental and climatic changes on the west faunal communities coast over the last 5 million years. changed over time and African Origins Research studies the microscopic structure of bones of dinosaurs, pterosaurs and mammal-like uses this to reconstruct reptiles in order to interpret various aspects ALBANY MUSEUM, past palaeoenviron- of the biology of extinct animals. GRAHAMSTOWN ments and palaeo- A summary of current research into fossils of animals, plants and early hominids from the beginning of life on Earth to the Middle Stone Age PERMIAN AGE PLANTS ecology. THE HOFMEYR SKULL Dr Rose Prevec studies the “No other country in the world can boast the oldest evidence of life on Earth extending back more than 3 billion years, the oldest multi-cellular animals, the oldest land-living plants, Professor Alan Morris described the Glossopteris flora of South Africa (the PAST HUMAN BEHAVIOUR Hofmeyer skull, a prehistoric, fossilized ancient forests that formed our coal Professor Chris Henshilwood directs the most distant ancestors of dinosaurs, the most complete record of the more than 80 million year ancestry of mammals, and, together with several other African countries, a most remarkable human skull about 36 000 years old deposits) and their end-Permian excavations at Blombos Cave where that corroborates genetic evidence that extinction. -
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
Sampling and Estimation of Diamond Content in Kimberlite Based on Microdiamonds Johannes Ferreira
Sampling and estimation of diamond content in kimberlite based on microdiamonds Johannes Ferreira To cite this version: Johannes Ferreira. Sampling and estimation of diamond content in kimberlite based on micro- diamonds. Other. Ecole Nationale Supérieure des Mines de Paris, 2013. English. NNT : 2013ENMP0078. pastel-00982337 HAL Id: pastel-00982337 https://pastel.archives-ouvertes.fr/pastel-00982337 Submitted on 23 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°: 2009 ENAM XXXX École doctorale n° 398: Géosciences et Ressources Naturelles Doctorat ParisTech T H È S E pour obtenir le grade de docteur délivré par l’École nationale supérieure des mines de Paris Spécialité “ Géostatistique ” présentée et soutenue publiquement par Johannes FERREIRA le 12 décembre 2013 Sampling and Estimation of Diamond Content in Kimberlite based on Microdiamonds Echantillonnage des gisements kimberlitiques à partir de microdiamants. Application à l’estimation des ressources récupérables Directeur de thèse : Christian LANTUÉJOUL Jury T M. Xavier EMERY, Professeur, Université du Chili, Santiago (Chili) Président Mme Christina DOHM, Professeur, Université du Witwatersrand, Johannesburg (Afrique du Sud) Rapporteur H M. Jean-Jacques ROYER, Ingénieur, HDR, E.N.S. Géologie de Nancy Rapporteur M. -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
Craniofacial Morphology of Simosuchus Clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar
Society of Vertebrate Paleontology Memoir 10 Journal of Vertebrate Paleontology Volume 30, Supplement to Number 6: 13–98, November 2010 © 2010 by the Society of Vertebrate Paleontology CRANIOFACIAL MORPHOLOGY OF SIMOSUCHUS CLARKI (CROCODYLIFORMES: NOTOSUCHIA) FROM THE LATE CRETACEOUS OF MADAGASCAR NATHAN J. KLEY,*,1 JOSEPH J. W. SERTICH,1 ALAN H. TURNER,1 DAVID W. KRAUSE,1 PATRICK M. O’CONNOR,2 and JUSTIN A. GEORGI3 1Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794-8081, U.S.A., [email protected]; [email protected]; [email protected]; [email protected]; 2Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, U.S.A., [email protected]; 3Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, U.S.A., [email protected] ABSTRACT—Simosuchus clarki is a small, pug-nosed notosuchian crocodyliform from the Late Cretaceous of Madagascar. Originally described on the basis of a single specimen including a remarkably complete and well-preserved skull and lower jaw, S. clarki is now known from five additional specimens that preserve portions of the craniofacial skeleton. Collectively, these six specimens represent all elements of the head skeleton except the stapedes, thus making the craniofacial skeleton of S. clarki one of the best and most completely preserved among all known basal mesoeucrocodylians. In this report, we provide a detailed description of the entire head skeleton of S. clarki, including a portion of the hyobranchial apparatus. The two most complete and well-preserved specimens differ substantially in several size and shape variables (e.g., projections, angulations, and areas of ornamentation), suggestive of sexual dimorphism. -
GSA TODAY Conference, P
Vol. 10, No. 2 February 2000 INSIDE • GSA and Subaru, p. 10 • Terrane Accretion Penrose GSA TODAY Conference, p. 11 A Publication of the Geological Society of America • 1999 Presidential Address, p. 24 Continental Growth, Preservation, and Modification in Southern Africa R. W. Carlson, F. R. Boyd, S. B. Shirey, P. E. Janney, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, D.C. 20015, USA, [email protected] T. L. Grove, S. A. Bowring, M. D. Schmitz, J. C. Dann, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA D. R. Bell, J. J. Gurney, S. H. Richardson, M. Tredoux, A. H. Menzies, Department of Geological Sciences, University of Cape Town, Rondebosch 7700, South Africa D. G. Pearson, Department of Geological Sciences, Durham University, South Road, Durham, DH1 3LE, UK R. J. Hart, Schonland Research Center, University of Witwater- srand, P.O. Box 3, Wits 2050, South Africa A. H. Wilson, Department of Geology, University of Natal, Durban, South Africa D. Moser, Geology and Geophysics Department, University of Utah, Salt Lake City, UT 84112-0111, USA ABSTRACT To understand the origin, modification, and preserva- tion of continents on Earth, a multidisciplinary study is examining the crust and upper mantle of southern Africa. Xenoliths of the mantle brought to the surface by kimber- lites show that the mantle beneath the Archean Kaapvaal Figure 2. Bouguer gravity image (courtesy of South African Council for Geosciences) craton is mostly melt-depleted peridotite with melt extrac- across Vredefort impact structure, South Africa. Color scale is in relative units repre- senting total gravity variation of 90 mgal across area of figure. -
The Stratigraphy and Structure of the Kommadagga Subgroup and Contiguous Rocks
THE STRATIGRAPHY AND STRUCTURE OF THE KOMMADAGGA SUBGROUP AND CONTIGUOUS ROCKS by ROGER SWART B.Sc . (Hons) Thesis presented in fulfilment of the requirements for the degree of Master of Science in the Department of Geology, Rhodes University ,Grahamstown. January 1982 ABSTRACT The Lake Mentz and Kommadagga Subgroups were deposited i n a marine environment and are characterised by a heterogeneous sequence of sediments, which range in grain size from clays to grits . During the first phase of deposition the Kwee~ vlei Shale and Floriskraal Formations were deposited in a prograding shoreline environment, whereas the succeeding Waaipoort Shale Formation is interpreted as represnting a reworked shoreline. The final phase of deposition of the Cape Supergroup was a regressive one in which the Kommadagga Subgroup wa s fo rmed. The coa rs eni ng upward cycle of thi s subgroup represents a deltaic deposit. A significant time gap appears to exist before the deposition of the glacial-marine Dwyka Tillite Formation. Structurally, the area was subjected to deformation by buckle folding at about 250 Ma into a series of folds with southward dipping axial planes. Only one phase of deformation is recognised in the study area . A decrease in pore space, mineral overgrowths,formation of silica and calcite cements and development of aut~igenic minerals such as opal, stilpnomelane; analcite, prehnite, muscovite and various clay minerals are the characteristic diagenetic features of the sediments.The mineralogical evidence suggests that the maximum temperature -
The Bushveld Igneous Complex
The Bushveld Igneous Complex THE GEOLOGY OF SOUTH AFRICA’S PLATINUM RESOURCES By C. A. Cousins, MSC. Johannesburg Consolidated Investment Company Limited A vast composite body of plutonic and volcanic rock in the central part of the Transvaal, the Bushveld igneous complex includes the platinum reef worked by Rustenburg Platinum Mines Limited and constituting the world’s greatest reserve of the platinum metals. This article describes the geological and economic aspects of this unusually interesting formation. In South Africa platinum occurs chiefly in square miles. Two of these areas lie at the the Merensky Reef, which itself forms part of eastern and western ends of the Bushveld and the Bushveld igneous complex, an irregular form wide curved belts, trending parallel to oval area of some 15,000 square miles occupy- the sedimentary rocks which they overlie, and ing a roughly central position in the province dipping inwards towards the centre of the of the Transvaal. A geological map of the Bushveld at similar angles. The western belt area, which provides the largest known has a flat sheet-like extension reaching the example of this interesting type of formation, western boundary of the Transvaal. The is shown on the facing page. third area extends northwards and cuts out- The complex rests upon a floor of sedi- side the sedimentary basin. Its exact relation- mentary rocks of the Transvaal System. This ship to the other outcrops within the basin floor is structurally in the form of an immense has not as yet been solved. oval basin, three hundred miles long and a As the eastern and western belts contain hundred miles broad. -
Attributes of Skaergaard-Type PGE Reefs
Attributes of Skaergaard-Type PGE Reefs James D. Miller, Jr.1 and Jens C. Ø. Andersen2 1Minnesota Geological Survey, c/o NRRI, University of Minnesota-Duluth, 5013 Miller Trunk Hwy., Duluth, MN, 55811 , USA 2Camborne School of Mines, University of Exeter, Redruth, Cornwall, TR15 3SE UK e-mail: [email protected], [email protected] Stratiform, platinum group element (PGE) peridotite, pyroxenite, and dunite are usually deposits have long been known to occur in quantitatively minor. When well-differentiated, ultramafic-mafic intrusive complexes such as such intrusions display a simplified cumulus Bushveld and Stillwater (Naldrett, 1989b). stratigraphy following the scheme: Ol or Pl only-> Commonly known as PGE reefs, such deposits are Ol + Pl -> Pl + Cpx + FeOx ± Ol -> Pl + Cpx + typically found near the transition from ultramafic FeOx + Ol + Ap. They have a strong cryptic to mafic cumulates where they occur as 1-3 meter layering towards iron-enrichment indicative of thick intervals enriched in PGEs (1-20 ppm) and Fenner-type differentiation. They differ from trace to moderate amounts of sulfide (0.5-5 wt %). classic PGE reef-bearing intrusions by lacking a However, relatively recent discoveries have significant ultramafic component (early olivine- demonstrated that potentially economic stratiform only crystallization is minor to absent in most PGE mineralization may also occur in tholeiitic tholeiitic intrusions) and by being poor in mafic layered intrusions. Au- and PGE-bearing orthopyroxene (inverted pigeonite is rarely a layers -
Monchegorsk Layered Intrusion, Fennoscandian Shield)
minerals Article Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield) Artem V. Mokrushin 1,* and Valery F. Smol’kin 2 1 Geological Institute—Subdivision of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 14 Fersman Street, 184209 Apatity, Russia 2 Vernadsky State Geological Museum of the Russian Academy of Sciences, 11/11 Mokhovaya Street, 125009 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-(902)133-39-95 Abstract: In 1990, the Sopcheozero Cr deposit was discovered in the Monchegorsk Paleoprotero- zoic layered mafic-ultramafic layered intrusion (Monchepluton). This stratiform early-magmatic deposit occurs in the middle part of the Dunite Block, which is a member of the Monchepluton layered series. The Cr2O3 average-weighted content in ordinary and rich ores of the deposit is 16.65 and 38.76 wt.%, respectively, at gradually changing concentrations within the rich, ordinary and poor ore types and ore body in general. The ores of the Sopcheozero deposit, having a ratio of Cr2O3/FeOtotal = 0.9–1.7, can serve as raw materials for the refractory and chemical industries. The ore Cr-spinel (magnochromite and magnoalumochromite) is associated with highly magnesian olivine (96–98 Fo) rich in Ni (0.4–1.1 wt.%). It confirms a low S content in the melt and complies with the low oxygen fugacity. The coexisting Cr-spinel-olivine pairs crystallized at temperatures ◦ from 1258 to 1163 C, with accessory Cr-spinel crystallizing at relatively low, while ore Cr-spinel at higher temperatures. The host rock and ore distinguish with widespread plastic deformations of ◦ Citation: Mokrushin, A.V.; Smol’kin, olivine at the postcrystallization phase under conditions of high temperature (above 400 C) and V.F. -
Curator 9-2 Cover.Qxd
Volume 9 Number 2 GEOLOGICAL CURATORS’ GROUP Registered Charity No. 296050 The Group is affiliated to the Geological Society of London. It was founded in 1974 to improve the status of geology in museums and similar institutions, and to improve the standard of geological curation in general by: - holding meetings to promote the exchange of information - providing information and advice on all matters relating to geology in museums - the surveillance of collections of geological specimens and information with a view to ensuring their well being - the maintenance of a code of practice for the curation and deployment of collections - the advancement of the documentation and conservation of geological sites - initiating and conducting surveys relating to the aims of the Group. 2009 COMMITTEE Chairman Helen Fothergill, Plymouth City Museum and Art Gallery: Drake Circus, Plymouth, PL4 8AJ, U.K. (tel: 01752 304774; fax: 01752 304775; e-mail: [email protected]) Secretary David Gelsthorpe, Manchester Museum, Oxford Road, Manchester M13 9PL, U.K. (tel: 0161 3061601; fax: 0161 2752676; e-mail: [email protected] Treasurer John Nudds, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K. (tel: +44 161 275 7861; e-mail: [email protected]) Programme Secretary Steve McLean, The Hancock Museum, The University, Newcastle-upon-Tyne NE2 4PT, U.K. (tel: 0191 2226765; fax: 0191 2226753; e-mail: [email protected]) Editor of Matthew Parkes, Natural History Division, National Museum of Ireland, Merrion Street, The Geological Curator Dublin 2, Ireland (tel: 353 (0)87 1221967; e-mail: [email protected]) Editor of Coprolite Tom Sharpe, Department of Geology, National Museums and Galleries of Wales, Cathays Park, Cardiff CF10 3NP, Wales, U.K. -
The Uranium Potential of the Bushveld Igneous Complex
(GEA748| June 1987 THE URANIUM POTENTIAL OF THE BUSHVELD IGNEOUS COMPLEX A CRITICAL REAPPRAISAL Investigators: MAG Andreoli R J Hart H J Brynard F A G M Camisani-Calzolari ATOMIC ENERGY CORPORATION OF SOUTH AFRICA LIMITED PRETORIA THIS DOCUMENT MAY NOT BE COPIED IN ANY WAY WHATSOEVER PER 158 GEA 748 ATOMIC ENERGY CORPORATION/UNIVERSITY OF PRETORIA WORKING GROUP ON URANIUM IN THE BUSHVELD COMPLEX Progress Report No. 4 THE URANIUM POTENTIAL OF THE BUSHVELD IGNEOUS COMPLEX A CRITICAL REAPPRAISAL Investigators: MAG Andreoli R J Hart H J Beynard F A G M Camisani-Calzolari POSTAL ADDRESS: Department of Geotechnology P 0 Box 582 PELINDABA PRETORIA June 1987 0001 ISBN 0 86960 848 7 PER-158 GEA-748 ATOMIC ENERGY CORPORATION/UNIVERSITY OF PRETORIA WORKING GROUP ON URANIUM IN THE BUSHVELD COMPLEX Progress Report No. 4 THE URANIUM POTENTIAL OF THE BUSHVELD IGNEOUS COMPLEX A CRITICAL REAPPRAISAL Investigators: MAG Andreoli R J Hart H J Brynard F A G M Camisani-Calzolari DEPARTMENT OF GEOTECHNOLOGY ATOMIC ENERGY CORPORATION OF SOUTH AFRICA LIMITED P 0 BOX 582, PRETORIA (0001) June 1987 ISBN 086960 848 7 PER-158- i - CONTENTS Page Samevatting/Abstract vi LIST OF ABBREVIATIONS ii-iii LIST OF TABLES iv LIST OF FIGURES v 1 INTRODUCTION 1 2 ON THE POSSIBILITY OF A GIANT OLYMPIC DAM-TYPE DEPOSIT JN THE BUSHVELD COMPLEX 3 3 THE WATERBERG COVER: A TARGET FOR UNCOMFORMITY-TYPE DEPOSITS? 19 4 ADDITIONAL TARGETS FOR URANIUM EXPLORATION 25 5 DISCUSSION & RECOMMENDATIONS 27 6 ACKNOWLEDGEMENTS 30 7 REFERENCES 30 LIST OP IBBEKVIAÏIOIIS All allanite amp amphibole