Per-20 Geochemical Aspects of the Megacryst Suite
Total Page:16
File Type:pdf, Size:1020Kb
PER-20 GEOCHEMICAL ASPECTS OF THE MEGACRYST SUITE FROM THE MONASTERY KIMBERLITE PIPE by W. R.O.JAKOB | ATOMIC ENERGY BOARD I pelindal..) / i PRETORIA 30 i*~\'$'.- j Republic of South Africa August 1977 3 i •:>:'::. MiK!ëliitebai!!gi88u»<(á$:<HHffl iliiiiiil Illi IflU.^SIÏilïiíïïjíl PER20-1 ATOMIC ENERGY BOARD GEOCHEMICAL ASPECTS Of THE MEGACRYST SUITE FROM THE MONASTERY KIMBERLITE PIPE by W.R.O. JAKOB* "Chemistry Division POSTAL ADDRESS: Private Rag X256 Pelindaba Preto.-ia August 1977 0001 ISBN 0 86960 667 0 GEOCHEMICAL ASPECTS OF THE MEGACRYST SUITE FROM THE MONASTERY KIMBERLITE PIPE W. R.O.JAKOB Thesis submitted in fulfilment of the requirements for the degree of Master of Science at the Department of Geochemistry of the University of Cape Town October 1977 2 CONTENTS Page SAMEVATTING 3 ABSTRACT 4 ACKNOWLEDGEMENTS 5 1. INTRODUCTION 6 2. SAMPLING AND LOCALITY DESCRIPTION 7 3. ANALYTICAL METHODS 9 4. ANALYTICAL RESULTS 9 4.1 Olivine 9 4.2 Orihopyroxene 10 4.3 Clinopyroxene 11 4.4 Garnet 12 4.5 llmenite 13 5. DISCUSSION 15 5.1 Clinopyroxene 15 5.2 Garnet 16 53 llmenite 18 5.4 Orthopyroxene 19 5.5 Olivine 22 6. GENERAL DISCUSSION AND CONCLUSIONS 26 7. REFERENCES 28 8. APPENDICES: 34 APPENDIX I: DIAGRAMS 34 APPENDIX II: PLATES 47 APPENDIX III: TABLES 11 TO 2B 51 3 5AMEVATTING 3 Die Monastery kimberlietpyp in die Distrik Marquard, Oranje-Vrystaat, Suid-Afrika, het groot belangstclling in kimberlietstudies gaande gemaak omdat dit groot enkelkristalle (2— 20 cm) van olivien, enstaiiet, diopsied, granaat, ilmeniet en flogopiet/vermikuliet bevat- Daar is vasgestel dat at die silikate (behalwe flogopiet wat nie bestudeer is nie) met ilmeniet verband nou. Hierdie studie handel oor die chemie van die megakristalgroep. Hierdie homogene kristalle het groot verskille in chemiese samestelling. Die silikate wat met ilmeniet vergroei is, is altyd ryker aan yste: en armer aan chroom as die diskrete megakrtstalte. Die o/nwn-megakristalle kan in twee samestellingstrekke verdeel word met gemiddeldes naby Fo86 (0,3 tot 0,4 % NiO) en Fo 80 (0,06 tot 0,11 % NiO). Die oliviene wat meer magnesium bevat, het dikwels klein kimberlietinsluitsels met n samestelling soortgelyk aan die hoofsteengroeftipe kimberliet vanaf Monastery. Die ensfat/et-megakristalle bestaan uit twee groepe met verskillende samestellings. Glasagtige, homogene enstatiete met groot verskille in chemiese samestelling kom die minste in Monastery voor. Growwe reëlmatige en onreëlmatige vergroeiings van enstatiet en ilmeniet het uiters beperkte chemiese samestellings en hulle val binne die strek wat deur die homogene enstatiete bepaal word. Hierdie twee tipes bepaal die enstatiete Groep I. Die volopste is die gelaagde enstatiete Groep II wat by laer temperature in ewewig gekom het en cKoomdiopsied ± yanaat laat uitkristalliseer het. Hierdie enstatiete het wisselende Mg/Mg+Fe-verhoudings, maar, in teenstelling met die enstatiete Groep I, het hulle baie beperkte verskille in chemiese samestelling. Die diopsied-megakristaHe is subkalsium-diopsiede, arm aan chroom, met ongeveer 10 mol % yster. Gelaagde diopsied-ilmenietvergroeiings het groter Ca/Ca+Mg-verhoudings as dia diskrete diopsiede. Die diskrete pranaaf-megakristalle is chroomarme, titaanryke pirope met peridootaffiniteite. Seldsame vondsc van klein granaatinsluitsels in ilmenietmegakristalle het 'n baie lae chroominhc (<0,23% Cr203). Diskrete ilmenietmegaknitaUe is die megakristalmineraal wat die meeste in Monastery voor kom. Hulle het groter verskille in chemiese samestelling as die ilmeniete wat met silikaatminerale vergroei is. *cl<l™e-Mlg)8, vir ^*6 Monastery-megakristalle is konstant (granaat) of bykans konstant (diop>ied, enstatiet). Die samestellings van die megakristalle dui daarop dat ol fopx+cpx+gnt ± ilmeniet gelyktydig met die temperatuurinterval 1 400 tot 1 1S0°c by 'n druk van 42,5 ± 2 kbar bestaan het. Die diopsied- en enstatiettermometer het 'n temperatuurstrek van ongeveer 1 400 tot 1 250 °C vir die diskrete megakriitalle verskaf, en 1250 tot 1 150°C vir die ilmenietsilikaatvergroeiing». Die megakristalle het buite die diamantbestendigheidsgebied in ewewig gekom. Tussenelementverhoudings van die megakristalminerale en die groot verskille in chemiese samestelling dui daarop dat die Monastery-megakristalle gedurende 'n magmatiese voorval in die Bomantel uit 'n klein hoeveelheid smeltsel gevorm het, waarskynlik aan die einde van die Karoo vulkanisme. 4 ABSTRACT The Monastery Kimberlite pipe, situated in the Marquard District, Orange Free State, South Africa, has evoked much interest in kimberlite studies because it contains large single crystals (2— 20 cm) of olivine, enstatite, diopside, garnet, ilmenite and phlogopite/vermiculite. All the silicates (except for phlogopite, which was not studied) have been found associated with ilmenite. Th»s study is concerned with the chemistry of the megacryst suite. These homogeneous crystals have large ranges in chemical compor-fion. The silicates intergrown with ilmenite are always more iron-rich and poorer in chrome than the discrete megacrysts. The olivine megacrysts fall into two compositional ranges, with averages near Fo86 (0,3 to 0,4% NiO) and Fo80 (0,06 to 0,11 % NiO). The more-magnesian olivines often have small inclusions of kimberlite with a composition similar to the main Quarry-Type Kimberlite from Monastery. The enstatite megacrysts fall into two compositionally different groups. Least abundant at Monastery are glassy, homogeneous enstatites which have large ranges itt chemical composition. Coarse regular and irregular intergrowths of enstatite and ilmenite have very restricted chemical compositions which fall within the range defined by the homogeneous enstatites. These two types define Group I enstatites. The most abundant are the lamellar Group II enstatite, which re equilibrated at lower temperatures and have exsolved chrome diopside t garnet. These enstatites have variable Mg/Mg+Fe ratios, but otherwise have very restricted ranges in chemical composition, unlike the Group I enstatites. The diopside megacrysts are chrome-poor subcalcic diopsides with about 10 mole % iron. Oiopside-ilmenite lamellar intergrowths have higher Ca/Ca+Mg ratios than the discrete diopsides. The discrete garnet megacrysts are chrome poor high-titanium pyropes with peridotitic affinities. Rare finds of small garnet inclusions in ilmenite megacrysts are very low in chrome « 0,33 % 0203). Discrete ilmenite megacrysts are the most abundant megacryst minerals at Monastery. These have wider ranges in chemical composition than the ilmenites which are intergrown with silicate minerals. ^DI'FT-MIIV' *or tne Monastery megacrysts is constant (garnet) or nearly constant (diopside, enstatite). The compositions of the megacrysts indicate that ol+opx+cpx+gnt ± ilmenite coexisted within the temperature interval 1 400 to 1 150 °C, at 42,5 ± 2 kbar pressure. The diopside and enstatite solvi give temperature ranges of about 1 400 to 1 250 °C for the discrete megacryst», and 1 250 °C to 1 150 "C for the ilmenite-silicate intergrowths. The megacrysts equilibrated outside the diamond-stability field. Inter-element relationships of the megacryst minerals and the wide ranges in chemical composition suggest that the Monastery megacrysts formed from a small volume of melt during a magmatic event in the Upper Mantle, possibly at the end of the Karroo volcanism. 5 ACKNOWLEDGEMENTS This work has benefitted from the assistance of the following members of staff of the University of Cape Town: Profs L. H. Ahrens and A.J tdank, tor permission 10 do this thesis on a part-time basis. J.J. Gurney for intioducing me to the field of kimberlite, for suggesting this project, and for most of the samples. This work could not have been compieted without his unfailing help, advice, encouragement and supervision. CJ- Hatton, for some of his computer programs. S.R. Rickaid for instructing me in the use of the microprobe, and for ensuring its efficient operation. Mrs D. Curney for typing the manuscript. Mrs S. Davids for the preparation of many grain mounts. D.G. Fraser of Oxford University, for discussions on Chapter 5.B. H.W. Fesq of NPRU, University of Witwatersrand, for many of his references. The Atomic Energy Board is thanked for permission to use its facilities during the final preparation of this work. In particular, I am indebted to the following: Mr P.E. Haskins for editing the manuscript. Reprograpnic Services for the final typesetting and reproduction. 6 1. INTRODUCTION Kimberlite is a volumetrically rare rock type, with its major occurrences on the stable shields of Southern Africa and Siberia. Two types of kimberlite am recognised. The hypabyssal facies kimberlite which intruded the surrounding rocks as dikes and sills, and the diatreme-facies kimberlite. Modern concepts visualise the latter to be emplaced as a cool (300 600 °C) crystal mush along fractures at depth, and to develop a gas-charged head during ascent, which results in an explosive breakthrough to the surface, forming a brecciated volcanic pipe. Due to adiabatic cooling resulting from expansion of the C02-rich phase, the diatreme-facies kimberlite consolidates in situ and shews little metamorphic effect on the surrounding rocks (Dawson, 1972). Kimberlite itself was most recently defined by Clement, Skinner and Scott (1977): "KIMBERLITE is a volatile-rich, potassic, ultrabasic, igneous rock which has a distinctively inequigranular texture resulting from the presence of macrocrysts set in an essentially microporphyritic matrix." Since the matrix consists