Extinctions of Life Precambrian Paleozoic V Vendian O Ordovician S Silurian D Devonian

Total Page:16

File Type:pdf, Size:1020Kb

Extinctions of Life Precambrian Paleozoic V Vendian O Ordovician S Silurian D Devonian Extinctions of Life Precambrian Paleozoic V Vendian O Ordovician S Silurian D Devonian t is a delight to be here and to talk know something about extinction—how were thought to have all of the charac- about extinctions of life, although it operates and what results it produces. teristics that an extinct group of animals some of you might find that title ought to have, and their disappearance incongruous. We usually use the Courtesy Department Library Services, American seemed perfectly understandable. That I Museum of Natural History. Neg./Trans. No. V/C2827 word life to refer to the collective prop- of course led to the use of the epithet erties of living organisms. So extinc- dinosaur for anything that is beyond its tion of life suggests perhaps annihilation time and ought to be gone. I hope my of all life. However, the study of ex- students never refer to me as a dinosaur. tinctions is in its infancy, and in new Many of the old ideas about dinosaurs fields, where there is much more igno- have changed radically through research rance than understanding, we often use of the last few decades. We now know order-of-magnitude estimates, ballpark that not all dinosaurs were large, al- guesses, and first approximations. Given though the average size was fairly great. that, the title is okay, since, to a first Some dinosaurs were the size of birds, approximation, life is extinct. Proba- and, in fact. some dinosaurs were the bly more than 99 percent of all species ancestors of birds. (Some people make that have ever lived on this planet have the statement that dinosaurs are not disappeared. The richness of the biota extinct; they have simply taken to the around us reflects only a slight excess of trees. ) We know from their morphology speciation over extinction. that some dinosaurs were very active Despite its magnitude and its appar- and were probably not cold-blooded. ent importance in the evolution of life, They may have been as homeothermic we know very, very little about what as you and 1 are. From studies of track- extinction is, as either a phenomenon ways of dinosaurs as well as some of or a process. How does a particular their morphological features, people species become extinct? What array have argued that dinosaurs weren’t in- of processes are operative during an Tyrannosaurus rex credibly dumb animals. Some of them extinction? How frequently are extinc- traveled in organized herds and probably tions catastrophic? How can we predict hen we think about extinction, the showed some fairly complex behaviors. what species or what kinds of species wimage that immediately comes to Finally, we know that dinosaurs were will become extinct in a given situation? mind is the dinosaur. Dinosaurs have the dominant large animals on land for And, how can we manage the biota to been known for well over a century about 150 million years, twice the span control extinction in the present and fu- now. the first fossils having been rec- during which mammals have held that ture world? These are some questions ognized in the 1820s. The early con- position. Dinosaurs arose in the late Tri- that we are not sure how to answer. ceptions about dinosaurs were that they assic. at about the same time that mam- But they are certainly of vital contem- were a strange group of animals. They mals appeared. They then dominated porary importance. As more and more were very large animals, thought per- the large-animal adaptive zone until they of the earth’s surface is altered and re- haps to be too big for terrestrial ecosys- became extinct rather rapidly at the end engineered, we are facing unprecedented tems, They were thought to be cold- of the Cretaceous. levels of extinction, unprecedented at blooded, like most modern reptiles, and The research of the last few decades least in historical time. And as we face therefore too slow. They were thought turned the disappearance of this very the possibility of nuclear winter, we to have too small brains and therefore symbol of extinction into very much need to know what that might do to the to be too dumb. In a nutshell, dinosaurs of an enigma. Many speculations were biota. Finally, from the standpoint of pure science, we want to understand how extinction has influenced the his- Era Precambrian Paleozoic Mesozoic Cenozoic tory of life on this planet and perhaps the evolution of living systems else- 4600670 570 505 438 408 360 286 248 213 144 65 2 where in the universe. So we need to Millions of Years before the Present 38 Los Alamos Science Fellows Coloquium 1988 Extinctions of Life Mesozoic Cenozoic C Carboniferous P Permian J Jurassic K Cretaceus T Tertiary IRIDIUM-RICH DEPOSIT AT CRETACEOUS-TERTIARY BOUNDARY Fig. 1. Close-up of the iridium-rich clay layer at the boundary between Cretaceus and Tertiary rocks in a stratigraphic section near Gubbio, Italy. The high iridium content of the clay (see Fig. 2) is attributed to the impact with the earth of an extraterrestrial body. Since discovery of the Gubbio anomaly in 1978, deposits similarly rich in iridium have been found at Cretaceous- Tertiary boundaries worldwide. (Photo cour- tesy of Alessandro Montanari, Department of Geology and Geophysics, University of Cali- THE ALVAREZ IRIDIUM ANOMALY Fig. 2. A plot, versus height above or be- low the Cretaceous-Tertiary boundary, of irid- published on what circumstances might the earth. Various scenarios, which dif- ium abundance in various stratigraphic sec- have caused dinosaurs to become ex- fer quantitatively but agree qualitatively, tions from the vicinity of Gubbio, Italy. The tinct, but none seemed very satisfying, suggest that huge amounts of dust were abundance rises abruptly at the end of the at least not until a discovery by Luis thrown into the atmosphere, blocking Cretaceus to a value some twenty-five times and Walter Alvarez in 1979. out sunlight for perhaps three months. greater than the background level and then Most of you are probably familiar The impact may have first heated the falls back to that level within approximately with that discovery. Walter Alvarez atmosphere and then cooled it. It may 15,000 years. (Figure adapted from “Current was looking at some stratigraphic sec- have produced large amounts of nitro- status of the impact theory for the terminal tions, near Gubbio in central Italy, that gen oxides, which would rain down as Cretaceus extinction” by Walter Alvarez, Luis span the Cretaceous-Tertiary bound- nitric acid. The list of damages can go W. Alvarez, Frank Asaro, and Helen V. Michel. ary. He saw a peculiar clay layer, I to on and on. 2 centimeters thick, sandwiched between older Cretaceus rocks and younger Ter- tiary rocks (Fig. 1). Walter was curious about the clay and sent it back [o his father for analysis. Luis, Frank Asaro, 6 and Helen Michel performed a number of geochemical analyses of the clay and 5 found that it contained an excess of irid- ium (Fig. 2). The excess was far too 4 large to explain on the basis of terres- trial surface sources, which are highly 3 depleted in iridium. They hypothesized 2 that the excess iridium was due to the impact of a large—perhaps 10 kilome- 1 ters in diameter-xtraterrestrial object Tertiary on the last day of the Cretaceus. I I I I I I I I I I 5 4 3 2 Now an impact by a 10-kilometer- 10 10 10 10 10 0 10 20 102 10’ 104 diameter object would wreak havoc on Height below or above Cretaceous-Tertiary Boundary (centimeters) Los Alamos Science Fellows Colloquium 1988 39 Extinctions of Life Precambrian Paleozoic V Vendian O Ordovician S Silurian D Devonian Various climatic and chemical mod- riod. So whatever happened was indeed missing. The focus is not on individu- els suggest that the earth wouldn’t have quite devastating to the marine biota. als but on some higher group—families, been a very pleasant place on the last perhaps, or tribes. night of the Cretaceus, that is, the ow do we know what became ex- Like historical census data, the fossil three-month night that followed the im- Htinct? How do we make quantita- record is incomplete, covering only a pact. Photosynthesis by green plants tive estimates of the magnitudes of mass small sample of the earth’s biota. Still, would have been shut down, and large extinctions? Paleontologists use two ba- it contains a huge number of species herbivores that fed upon them would sic methods to study mass extinctions from all parts of the world—too much have starved, as would the carnivores and other events in geologic history. data to assess well. We therefore usu- that stalked the plant eaters. The ex- The traditional method is to collect in- ally work at higher taxonomic levels, pected result would be extinctions. We formation about the types and numbers such as the genus or the family. We don’t have an equation relating the of fossils in the various strata of out- lose resolution doing that but sometimes species that would become extinct to crops or core samples and then to deter- get a better overall picture, because a the size of the impacting body. The one mine the times when the various fossil genus, say, is included in our data set thing we do know is that if things got as taxa first appeared, flourished, and then even if all but one of its species are bad as the models predict, more kinds disappeared. Such data are then used missing from the fossil record.
Recommended publications
  • Origins: V 11 November 2015 Page 1 Table of Contents
    Origins: V 11 November 2015 Page 1 Table of Contents Just Published: From Big Bang to Galactic Discovering Big History: Civilizations .............................................................................. 19 An Unorthodox Journey Robert H. Moore New and Returning IBHA Members ...................................... 20 PMR Communications .......... 3 Anthropocene Conference ....................................................... 21 Big History and the Stovepipe Call for Papers for the 2016 IBHA Conference Implosion at the University of Amsterdam ......................................... 22 Ken Baskin ......... 10 Mogli e Buoi ............................................................................... 28 New Coursera Big History Board Nominations ................................................................. 31 Course Available ................................................... 16 Post-Conference Tour .............................................................. 32 Origins Editor: Lowell Gustafson, Villanova University, Pennsylvania (USA) Origins. ISSN 2377-7729 Thank you for your Associate Cynthia Brown, Dominican University of California (USA) membership in Editor: Esther Quaedackers, University of Amsterdam (Netherlands) Please submit articles and other material to Origins, Editor, [email protected] the IBHA. Your Assistant membership dues Editor: Mojgan Behmand, Dominican University of California, San Rafael (USA) The views and opinions expressed in Origins are not necessarily those of the IBHA Board. all go towards the
    [Show full text]
  • Lecture 20 - the History of Life on Earth
    Lecture 20 - The History of Life on Earth Lecture 20 The History of Life on Earth Astronomy 141 – Autumn 2012 This lecture reviews the history of life on Earth. Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon Emergence of Photosynthesis and the rise of O2 in the Earth’s atmosphere. Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon Colonization of land first by plants, then by animals Emergence of primates, then hominids, then humans. A brief digression on notation: “ya” = “years ago” Introduce a simple compact notation for writing the length of time before the present day. For example: “3.5 Billion years ago” “454 Million years ago” Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago [Note: some sources use Ga and Ma] Astronomy 141 - Winter 2012 1 Lecture 20 - The History of Life on Earth The four Eons of geological time. Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen Phanerozoic: since 454 Mya: Rise of plant and animal life The Archaean Eon began with the end of heavy bombardment ~3.8 Gya. Conditions stabilized. Oceans, but no O2 in the atmosphere. Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis. Time of rapid diversification of life driven by Natural Selection.
    [Show full text]
  • Chapter 22 Notes: Introduction to Evolution
    NOTES: Ch 22 – Descent With Modification – A Darwinian View of Life Our planet is home to a huge variety of organisms! (Scientists estimate of organisms alive today!) Even more amazing is evidence of organisms that once lived on earth, but are now . Several hundred million species have come and gone during 4.5 billion years life is believed to have existed on earth So…where have they gone… why have they disappeared? EVOLUTION: the process by which have descended from . Central Idea: organisms alive today have been produced by a long process of . FITNESS: refers to traits and behaviors of organisms that enable them to survive and reproduce COMMON DESCENT: species ADAPTATION: any inherited characteristic that enhances an organism’s ability to ~based on variations that are HOW DO WE KNOW THAT EVOLUTION HAS OCCURRED (and is still happening!!!)??? Lines of evidence: 1) So many species! -at least (250,000 beetles!) 2) ADAPTATIONS ● Structural adaptations - - ● Physiological adaptations -change in - to certain toxins 3) Biogeography: - - and -Examples: 13 species of finches on the 13 Galapagos Islands -57 species of Kangaroos…all in Australia 4) Age of Earth: -Rates of motion of tectonic plates - 5) FOSSILS: -Evidence of (shells, casts, bones, teeth, imprints) -Show a -We see progressive changes based on the order they were buried in sedimentary rock: *Few many fossils / species * 6) Applied Genetics: “Artificial Selection” - (cattle, dogs, cats) -insecticide-resistant insects - 7) Homologies: resulting from common ancestry Anatomical Homologies: ● comparative anatomy reveals HOMOLOGOUS STRUCTURES ( , different functions) -EX: ! Vestigial Organs: -“Leftovers” from the evolutionary past -Structures that Embryological Homologies: ● similarities evident in Molecular/Biochemical Homologies: ● DNA is the “universal” genetic code or code of life ● Proteins ( ) Darwin & the Scientists of his time Introduction to Darwin… ● On November 24, 1859, Charles Darwin published On the Origin of Species by Means of Natural Selection.
    [Show full text]
  • The Evolution and Distribution of Life in the Precambrian Eon-Global Perspective and the Indian Record 765
    The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record 765 The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record M SHARMA* and Y SHUKLA Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India *Corresponding author (Email, [email protected]) The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the fi eld of evolution of life. Although the Precambrian encompasses 87% of the earth’s history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains. [Sharma M and Shukla Y 2009 The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record; J. Biosci. 34 765–776] DOI 10.1007/s12038-009-0065-8 1. Introduction suggested that all the living forms can be grouped into three principal domains viz. the Bacteria, the Archaea, and The sudden appearance and radiation of both skeletal and the Eucarya (Woese 1987, 2002; Woese et al.
    [Show full text]
  • Timeline of the Evolutionary History of Life
    Timeline of the evolutionary history of life This timeline of the evolutionary history of life represents the current scientific theory Life timeline Ice Ages outlining the major events during the 0 — Primates Quater nary Flowers ←Earliest apes development of life on planet Earth. In P Birds h Mammals – Plants Dinosaurs biology, evolution is any change across Karo o a n ← Andean Tetrapoda successive generations in the heritable -50 0 — e Arthropods Molluscs r ←Cambrian explosion characteristics of biological populations. o ← Cryoge nian Ediacara biota – z ← Evolutionary processes give rise to diversity o Earliest animals ←Earliest plants at every level of biological organization, i Multicellular -1000 — c from kingdoms to species, and individual life ←Sexual reproduction organisms and molecules, such as DNA and – P proteins. The similarities between all present r -1500 — o day organisms indicate the presence of a t – e common ancestor from which all known r Eukaryotes o species, living and extinct, have diverged -2000 — z o through the process of evolution. More than i Huron ian – c 99 percent of all species, amounting to over ←Oxygen crisis [1] five billion species, that ever lived on -2500 — ←Atmospheric oxygen Earth are estimated to be extinct.[2][3] Estimates on the number of Earth's current – Photosynthesis Pong ola species range from 10 million to 14 -3000 — A million,[4] of which about 1.2 million have r c been documented and over 86 percent have – h [5] e not yet been described. However, a May a -3500 — n ←Earliest oxygen 2016
    [Show full text]
  • WALTER ALVAREZ Es Profesor De Geología En La
    SELLO CRITICA COLECCIÓN FORMATO 15,5x23 TD SERVICIO Director: «Un relato maravilloso de la Gran Historia de la mano del geólogo que CORRECCIÓN: PRIMERAS JOSÉ MANUEL SÁNCHEZ RON demostró que los dinosaurios se extinguieron por el impacto de un asteroide. 29/3 ARNAU Últimos títulos publicados: DISEÑO Alvarez lo explica con precisión y gran encanto, recordando lo absurdamente El VIAJE MÁS REALIZACIÓN Carl Sagan improbable que es el papel que desempeñamos en esta historia colosal.» El mundo y sus demonios —DAVID CHRISTIAN, fundador de la Gran Historia EDICIÓN La ciencia como una luz en la oscuridad y autor de Mapas del tiempo: introducción a la Gran Historia. Rita Levi-Montalcini CORRECCIÓN: SEGUNDAS El viaje más improbable es una aventura apasionante para entender el origen del El as en la manga IMPROBABLE 7/4 Arnau DISEÑO Los dones reservados a la vejez universo y la vida desde el prisma de la Gran Historia, disciplina que concilia dis- WALTER ALVAREZ es profesor de Geología en la tintas ramas académicas para construir un retrato desde todas las perspectivas de Universidad de California, en Berkeley, y uno de REALIZACIÓN Ian Stewart un período histórico. Walter Alvarez, quien junto a su padre, Luis Alvarez, consi- Las matemáticas del cosmos los fundadores de la International Big History guió hallar en 1980 las primeras evidencias geológicas del impacto del meteorito Association. En 2002 fue galardonado con la CARACTERÍSTICAS Luigi Luca Cavalli-Sforza que causó la extinción de más del 50% de la vida animal sobre la Tierra (entre ellos, El VIAJE MÁS IMPROBABLE Medalla Penrose, el premio más distinguido en IMPRESIÓN CMYK Genes, pueblos y lenguas los dinosaurios), combina sus vastos conocimientos con Física y Arqueología para Geología.
    [Show full text]
  • Board Meeting Minutes 3
    IBHA Board of Directors Meeting Wednesday, August 6, 2014 Edgehill Mansion Garden Room Agenda 8:30 – 10:30 am 1. Opening the Meeting, Introduction of - Welcome to - New Board Members (Fred Spier, Chair) 2. Approval of 2012 Board Meeting Minutes 3. Presidential Remarks (David Christian) 4. Further Board Changes 5. Election of Officers 11:00 am – 12:30 pm 6. President’s Report (David Christian) 7. Publications Committee Report (Cynthia Brown, Esther Quaedackers) 8. Treasurer’s Report (Craig Benjamin) 9. Secretary’s Report (Lowell Gustafson) 1 – 3 pm 10. Advisory Council Report (Pamela Benjamin) 11. International Coordinator’s Report (Barry Rodrigue) 12. Archive IBHA papers (Barry Rodrigue) 13. Board Communication (Forum) 3:30 – 5 pm 14. Location for 2016 and perhaps 2018 IBHA Conferences (Esther Quaedackers). 15 Policies 16. New Business 17. Recognition and thanks. 18. Adjournment of Meeting Attending: Milly Alvarez, Walter Alvarez, Mojgan Behmand, Craig Benjamin, Pamela Benjamin, Cynthia Brown, David Christian, Lowell Gustafson, Jonathan Markley, Esther Quaedackers, Barry Rodrigue, Fred Spier, Joseph Voros, Sun Yue Absent (notified in advance), Andrey Korotayev 1. Fred Spier opened the meeting at 8:30 a.m. He welcomed the four new board members who will each be serving a three year term: Mojgan Behmand, Esther Quaedackers, Joseph Voros, and Sun Yue. Jonathan Markley was elected by acclamation to fill the seat that was open due to the resignation of Walter Alvarez. 2. Craig Benjamin moved and Esther Quadackers seconded a motion that the 2012 minutes be adopted as a true and accurate record of the 2012 board meeting. The motion was approved unanimously.
    [Show full text]
  • Geologic History of the Earth 1 the Precambrian
    Geologic History of the Earth 1 algae = very simple plants that Geologists are scientists who study the structure grow in or near the water of rocks and the history of the Earth. By looking at first = in the beginning at and examining layers of rocks and the fossils basic = main, important they contain they are able to tell us what the beginning = start Earth looked like at a certain time in history and billion = a thousand million what kind of plants and animals lived at that breathe = to take air into your lungs and push it out again time. carbon dioxide = gas that is produced when you breathe Scientists think that the Earth was probably formed at the same time as the rest out of our solar system, about 4.6 billion years ago. The solar system may have be- certain = special gun as a cloud of dust, from which the sun and the planets evolved. Small par- complex = something that has ticles crashed into each other to create bigger objects, which then turned into many different parts smaller or larger planets. Our Earth is made up of three basic layers. The cen- consist of = to be made up of tre has a core made of iron and nickel. Around it is a thick layer of rock called contain = have in them the mantle and around that is a thin layer of rock called the crust. core = the hard centre of an object Over 4 billion years ago the Earth was totally different from the planet we live create = make on today.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Copertina Guida Ai TRILOBITI V3 Esterno
    Enrico Bonino nato in provincia di Bergamo nel 1966, Enrico si è laureato in Geologia presso il Dipartimento di Scienze della Terra dell'Università di Genova. Attualmente risiede in Belgio dove svolge attività come specialista nel settore dei Sistemi di Informazione Geografica e analisi di immagini digitali. Curatore scientifico del Museo Back to the Past, ha pubblicato numerosi volumi di paleontologia in lingua italiana e inglese, collaborando inoltre all’elaborazione di testi e pubblicazioni scientifiche a livello nazonale e internazionale. Oltre alla passione per questa classe di artropodi, i suoi interessi sono orientati alle forme di vita vissute nel Precambriano, stromatoliti, e fossilizzazioni tipo konservat-lagerstätte. Carlo Kier nato a Milano nel 1961, Carlo si è laureato in Legge, ed è attualmente presidente della catena di alberghi Azul Hotel. Risiede a Cancun, Messico, dove si dedica ad attività legate all'ambiente marino. All'età di 16 anni, ha iniziato una lunga collaborazione con il Museo di Storia Naturale di Milano, ed è a partire dal 1970 che prese inizio la vera passione per i trilobiti, dando avvio a quella che oggi è diventata una delle collezioni paleontologiche più importanti al mondo. La sua instancabile attività di ricerca sul terreno in varie parti del globo e la collaborazione con professionisti del settore, ha permesso la descrizione di nuove specie di trilobiti ed artropodi. Una forte determinazione e la costruzione di un nuovo complesso alberghiero (AZUL Sensatori) hanno infine concretizzzato la realizzazione
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Western North Greenland (Laurentia)
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 69 · 2021 Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia) JOHN S. PEEL Peel, J.S. 2021. Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Mi- aolingian Series), western North Greenland (Laurentia). Bulletin of the Geological Society of Denmark, Vol. 69, pp. 1–33. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2021-69-01 Trilobites dominantly of middle Cambrian (Miaolingian Series, Wuliuan Stage) Geological Society of Denmark age are described from the Telt Bugt Formation of Daugaard-Jensen Land, western https://2dgf.dk North Greenland (Laurentia), which is a correlative of the Cape Wood Formation of Inglefield Land and Ellesmere Island, Nunavut. Four biozones are recognised in Received 6 July 2020 Daugaard-Jensen Land, representing the Delamaran and Topazan regional stages Accepted in revised form of the western USA. The basal Plagiura–Poliella Biozone, with Mexicella cf. robusta, 16 December 2020 Kochiella, Fieldaspis? and Plagiura?, straddles the Cambrian Series 2–Miaolingian Series Published online 20 January 2021 boundary. It is overlain by the Mexicella mexicana Biozone, recognised for the first time in Greenland, with rare specimens of Caborcella arrojosensis. The Glossopleura walcotti © 2021 the authors. Re-use of material is Biozone, with Glossopleura, Clavaspidella and Polypleuraspis, dominates the succes- permitted, provided this work is cited. sion in eastern Daugaard-Jensen Land but is seemingly not represented in the type Creative Commons License CC BY: section in western outcrops, likely reflecting the drastic thinning of the formation https://creativecommons.org/licenses/by/4.0/ towards the north-west.
    [Show full text]