Evidence for Two Types of Brown Adipose Tissue in Humans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Insights Into the Secretory Functions of Brown Adipose Tissue
243 2 Journal of J Villarroya et al. Secretory functions of brown 243:2 R19–R27 Endocrinology adipose tissue REVIEW New insights into the secretory functions of brown adipose tissue Joan Villarroya, Rubén Cereijo, Aleix Gavaldà-Navarro, Marion Peyrou, Marta Giralt and Francesc Villarroya Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain Correspondence should be addressed to F Villarroya: [email protected] Abstract In recent years, an important secretory role of brown adipose tissue (BAT) has emerged, Key Words which is consistent, to some extent, with the earlier recognition of the important f brown adipose tissue secretory role of white fat. The so-called brown adipokines or ‘batokines’ may play an f brown adipokine autocrine role, which may either be positive or negative, in the thermogenic function f batokine of brown adipocytes. Additionally, there is a growing recognition of the signalling f thermogenesis molecules released by brown adipocytes that target sympathetic nerve endings (such as neuregulin-4 and S100b protein), vascular cells (e.g., bone morphogenetic protein-8b), and immune cells (e.g., C-X-C motif chemokine ligand-14) to promote the tissue remodelling associated with the adaptive BAT recruitment in response to thermogenic stimuli. Moreover, existing indications of an endocrine role of BAT are being confirmed through the release of brown adipokines acting on other distant tissues and organs; a recent example is the recognition that BAT-secreted fibroblast growth factor-21 and myostatin target the heart and skeletal muscle, respectively. -
The Mesocolon a Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization
ORIGINAL ARTICLE The Mesocolon A Histological and Electron Microscopic Characterization of the Mesenteric Attachment of the Colon Prior to and After Surgical Mobilization Kevin Culligan, MRCS,∗ Stewart Walsh, FRCSEd,∗ Colum Dunne, PhD,∗ Michael Walsh, PhD,† Siobhan Ryan, MB,‡ Fabio Quondamatteo, MD,‡ Peter Dockery, PhD,§ and J. Calvin Coffey, FRCSI∗¶ uring fetal development, the dorsal mesentery suspends the en- Background: Colonic mobilization requires separation of mesocolon from tire gastrointestinal tract from the posterior abdominal wall. The underlying fascia. Despite the surgical importance of planes formed by these D mesocolon is the adult remnant of that part of the dorsal mesentery structures, no study has formally characterized their microscopic features. associated with the colon.1 In the adult human, the transverse and The aim of this study was to determine the histological and electron micro- lateral sigmoid portions of the mesocolon are mobile whereas the as- scopic appearance of mesocolon, fascia, and retroperitoneum, prior to and cending, descending, and medial sigmoid portions are nonmobile and after colonic mobilization. attached to underlying retroperitoneum.2–4 Classic anatomic teaching Methods: In 24 cadavers, samples were taken from right, transverse, de- maintains that the ascending and descending mesocolon “disappear” scending, and sigmoid mesocolon. In 12 cadavers, specimens were stained during embryogenesis.5,6 In keeping with this, the identification of a with hematoxylin and eosin (3 sections) or Masson trichrome (3 sections). In right or left mesocolon in the adult is frequently depicted as anoma- the second 12 cadavers, lymphatic channels were identified by staining im- lous rather than accepted as an anatomic norm.7 Accordingly, the munohistochemically for podoplanin. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity
nutrients Review Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review Elvira Verduci 1,2,*,† , Valeria Calcaterra 2,3,† , Elisabetta Di Profio 2,4, Giulia Fiore 2, Federica Rey 5,6 , Vittoria Carlotta Magenes 2, Carolina Federica Todisco 2, Stephana Carelli 5,6,* and Gian Vincenzo Zuccotti 2,5,6 1 Department of Health Sciences, University of Milan, 20146 Milan, Italy 2 Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; [email protected] (V.C.); elisabetta.diprofi[email protected] (E.D.P.); giulia.fi[email protected] (G.F.); [email protected] (V.C.M.); [email protected] (C.F.T.); [email protected] (G.V.Z.) 3 Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy 4 Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy 5 Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; [email protected] 6 Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy * Correspondence: [email protected] (E.V.); [email protected] (S.C.) † These authors contributed equally to this work. Abstract: Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we Citation: Verduci, E.; Calcaterra, V.; revised preclinical and clinical works on factors that may promote BAT or browning of white adipose Di Profio, E.; Fiore, G.; Rey, F.; tissue (WAT) from fetal age to adolescence. -
Autoimmunity Mixed Connective Tissue Disease (CTD)
Autoimmunity Mixed Connective Tissue Disease (mixed CTD) and Undifferentiated Connective Tissue Disease (UCTD) Autoimmunity and Connective Tissue Disease (CTD) The immune system normally produces antibodies which attack bugs (viruses, bacteria and fungi). Sometimes, for reasons we don’t fully understand, the immune system goes into ‘overdrive’ and produces antibodies which attack the body’s own tissues, causing inflammation. This is called autoimmunity and may cause an autoimmune disease. A common example of this is underactive thyroid where antibodies are produced which attack the thyroid gland. The connective tissues are the structural portions of our body that essentially hold the cells of the body together. These tissues form a framework or matrix for the body. Connective Tissue Disease (CTD) Connective tissue disease is an autoimmune disease where the body produces antibodies against its own connective tissue, causing inflammation. The ‘classic’ connective tissue diseases include: Lupus Rheumatoid arthritis Scleroderma (or systemic sclerosis) Polymyositis and Source: Rheumatology Reference No: 6252-1 Issue date: 26/9/19 Review date: 26/9/22 Page 1 of 4 Dermatomyositis Each of these diseases has a typical presentation with clinical findings that doctors can recognise during an examination. Each also has certain blood test abnormalities and abnormal antibody patterns. However, each of these diseases can start with very mild symptoms before developing the classic features that help in the diagnosis. Undifferentiated Connective Tissue Disease (UCTD) Almost one in four people seen in rheumatology clinics develop an autoimmune disease which doesn't fit neatly into a category, so they are not given a definite disease label. When these conditions have not developed the classic features of a particular disease, doctors will often refer to the condition as "undifferentiated connective tissue disease" or UCTD for short. -
Collagens—Structure, Function, and Biosynthesis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Advanced Drug Delivery Reviews 55 (2003) 1531–1546 www.elsevier.com/locate/addr Collagens—structure, function, and biosynthesis K. Gelsea,E.Po¨schlb, T. Aignera,* a Cartilage Research, Department of Pathology, University of Erlangen-Nu¨rnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany b Department of Experimental Medicine I, University of Erlangen-Nu¨rnberg, 91054 Erlangen, Germany Received 20 January 2003; accepted 26 August 2003 Abstract The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue. D 2003 Elsevier B.V. All rights reserved. Keywords: Collagen; Extracellular matrix; Fibrillogenesis; Connective tissue Contents 1. Collagens—general introduction ............................................. 1532 2. Collagens—the basic structural module......................................... -
The Remaining Mysteries About Brown Adipose Tissues
cells Review The Remaining Mysteries about Brown Adipose Tissues Miwako Nishio 1 and Kumiko Saeki 1,2,* 1 Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; [email protected] 2 Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan * Correspondence: [email protected]; Tel.: +81-3-3202-7181 Received: 30 September 2020; Accepted: 4 November 2020; Published: 10 November 2020 Abstract: Brown adipose tissue (BAT), which is a thermogenic fat tissue originally discovered in small hibernating mammals, is believed to exert anti-obesity effects in humans. Although evidence has been accumulating to show the importance of BAT in metabolism regulation, there are a number of unanswered questions. In this review, we show the remaining mysteries about BATs. The distribution of BAT can be visualized by nuclear medicine examinations; however, the precise localization of human BAT is not yet completely understood. For example, studies of 18F-fluorodeoxyglucose PET/CT scans have shown that interscapular BAT (iBAT), the largest BAT in mice, exists only in the neonatal period or in early infancy in humans. However, an old anatomical study illustrated the presence of iBAT in adult humans, suggesting that there is a discrepancy between anatomical findings and imaging data. It is also known that BAT secretes various metabolism-improving factors, which are collectively called as BATokines. With small exceptions, however, their main producers are not BAT per se, raising the possibility that there are still more BATokines to be discovered. -
Kumka's Response to Stecco's Fascial Nomenclature Editorial
Journal of Bodywork & Movement Therapies (2014) 18, 591e598 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/jbmt FASCIA SCIENCE AND CLINICAL APPLICATIONS: RESPONSE Kumka’s response to Stecco’s fascial nomenclature editorial Myroslava Kumka, MD, PhD* Canadian Memorial Chiropractic College, Department of Anatomy, 6100 Leslie Street, Toronto, ON M2H 3J1, Canada Received 12 May 2014; received in revised form 13 May 2014; accepted 26 June 2014 Why are there so many discussions? response to the direction of various strains and stimuli. (De Zordo et al., 2009) Embedded with a range of mechanore- The clinical importance of fasciae (involvement in patho- ceptors and free nerve endings, it appears fascia has a role in logical conditions, manipulation, treatment) makes the proprioception, muscle tonicity, and pain generation. fascial system a subject of investigation using techniques (Schleip et al., 2005) Pathology and injury of fascia could ranging from direct imaging and dissections to in vitro potentially lead to modification of the entire efficiency of cellular modeling and mathematical algorithms (Chaudhry the locomotor system (van der Wal and Pubmed Exact, 2009). et al., 2008; Langevin et al., 2007). Despite being a topic of growing interest worldwide, This tissue is important for all manual therapists as a controversies still exist regarding the official definition, pain generator and potentially treatable entity through soft terminology, classification and clinical significance of fascia tissue and joint manipulative techniques. (Day et al., 2009) (Langevin et al., 2009; Mirkin, 2008). It is also reportedly treated with therapeutic modalities Lack of consistent terminology has a negative effect on such as therapeutic ultrasound, microcurrent, low level international communication within and outside many laser, acupuncture, and extracorporeal shockwave therapy. -
Connective Tissue – Material Found Between Cells – Supports and Binds Structures Together – Stores Energy As Fat – Provides Immunity to Disease
Chapter 4 The Tissue Level of Organization • Group of similar cells – common function • Histology – study of tissues • Pathologist – looks for tissue changes that indicate disease 4-1 4 Basic Tissues (1) • Epithelial Tissue – covers surfaces because cells are in contact – lines hollow organs, cavities and ducts – forms glands when cells sink under the surface • Connective Tissue – material found between cells – supports and binds structures together – stores energy as fat – provides immunity to disease 4-2 4 Basic Tissues (2) • Muscle Tissue – cells shorten in length producing movement • Nerve Tissue – cells that conduct electrical signals – detects changes inside and outside the body – responds with nerve impulses 4-3 Epithelial Tissue -- General Features • Closely packed cells forming continuous sheets • Cells sit on basement membrane • Apical (upper) free surface • Avascular---without blood vessels – nutrients diffuse in from underlying connective tissue • Rapid cell division • Covering / lining versus glandular types 4-4 Basement Membrane • holds cells to connective tissue 4-5 Types of Epithelium • Covering and lining epithelium – epidermis of skin – lining of blood vessels and ducts – lining respiratory, reproductive, urinary & GI tract • Glandular epithelium – secreting portion of glands – thyroid, adrenal, and sweat glands 4-6 Classification of Epithelium • Classified by arrangement of cells into layers – simple = one cell layer thick – stratified = many cell layers thick – pseudostratified = single layer of cells where all cells -
Review: Epithelial Tissue
Review: Epithelial Tissue • “There are 2 basic kinds of epithelial tissues.” What could that mean? * simple vs. stratified * absorptive vs. protective * glands vs. other • You are looking at epithelial cells from the intestine. What do you expect to see? tight junctions; simple columnar; gobet cells; microvilli • You are looking at epithelial cells from the trachea. What do you expect to see? cilia; pseudostratified columnar; goblet cells 1 4-1 Four Types of Tissue Tissue Type Role(s) - Covers surfaces/passages - Forms glands - Structural support CONNECTIVE - Fills internal spaces - Transports materials - Contraction! - Transmits information (electrically) 2 Classification of connective tissue 1. Connective tissue proper 1a. Loose: areolar, adipose, reticular 1b. Dense: dense regular, dense irregular, elastic 2. Fluid connective tissue 2a. Blood: red blood cells, white blood cells, platelets 2b. Lymph 3. Supporting connective tissue 3a. Cartilage: hyaline, elastic, fibrocartilage 3b. Bone 3 Defining connective tissue by the process of elimination if not epithelial, muscle, or nervous, must be connective! 4 LAB MANUAL Figure 6.4 Areolar connective tissue: A prototype (model) connective tissue. Cell types Extracellular matrix Ground substance Macrophage Fibers = proteins • Collagen fiber • Elastic fiber • Reticular fiber Fibroblast Lymphocyte Adipocyte Capillary Mast cell 5 The Cells of Connective Tissue Proper Melanocytes and macrophages, mesenchymal, mast; Adipo- / lympho- / fibrocytes and also fibroblasts. These are the cells of connective -
Brown Adipose Tissue- What Is Known and What to Be Known?
MOJ Cell Science & Report Mini Review Open Access Brown adipose tissue- what is known and what to be known? Abstract Volume 3 Issue 5 - 2016 Adult human brown adipose tissue has been known for a long time as a vestigial Nora H Ahmed,1 Omnia S Shams,2 Ahmed R organ with limited or no function that found with opulence in newborn and infants, 3 4 helping them controlling their body thermogenesis without shivering, followed by its Elbaz, Ahmed S Shams 1Department of Medical Biochemistry and Molecular Biology, gradual disappearance with age (disparate form animals like rodents which keep BAT Suez Canal University, Egypt in adult life). Recently BAT existence, distribution and activity has been unraveled 2Faculty of Science, Suez Canal University, Egypt accidentally. There by researches on BAT demonstrated undeniable links to human 3Faculty of Pharmacy, Suez Canal University, Egypt metabolism and body composition. The fixed facts regarding body metabolism and 4Department of Human anatomy and embryology, Suez Canal energy homeostasis that have been granted for centuries are about to exhibit different University, Egypt perspectives. BAT discovery ignited a new line of research focusing on modulating energy expenditure and hence controlling many metabolic phenomena. Here we offer Correspondence: Nora Hosny Ahmed, Assistant lecturer of a brief review of what have been reported regarding BAT and it activity with pointing Medical Biochemistry, Suez Canal University, Ismailia, Egypt, Tel to novel challenges that need to be unveiled. 01006906656, Email [email protected] Received: August 17, 2016 | Published: October 17, 2016 Introduction Adipose tissue is a loose connective tissue classified to white adipose tissue (WAT), which is an active endocrine organ acting as an energy storage depot (Figure 1), with a small amounts of Brown adipose tissue (BAT) (Figure 1).1 BAT is found in almost all mammals. -
Terminologia Anatomica and Its Practical Usage: Pitfalls and How to Avoid Them
CORE Metadata, citation and similar papers at core.ac.uk Provided by Via Medica Journals ONLINE FIRST This is a provisional PDF only. Copyedited and fully formatted version will be made available soon. ISSN: 0015-5659 e-ISSN: 1644-3284 Terminologia Anatomica and its practical usage: pitfalls and how to avoid them Authors: Piotr Paweł Chmielewski, Zygmunt Antoni Domagała DOI: 10.5603/FM.a2019.0086 Article type: REVIEW ARTICLES Submitted: 2019-06-29 Accepted: 2019-07-10 Published online: 2019-07-29 This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed. Powered by TCPDF (www.tcpdf.org) Terminologia Anatomica and its practical usage: pitfalls and how to avoid them Running title: New Terminologia Anatomica and its practical usage Piotr Paweł Chmielewski, Zygmunt Antoni Domagała Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University Address for correspondence: Dr. Piotr Paweł Chmielewski, PhD, Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 6a Chałubińskiego Street, 50-368 Wrocław, Poland, e-mail: [email protected] ABSTRACT In 2016, the Federative International Programme for Anatomical Terminology (FIPAT) tentatively approved the updated and extended version of anatomical terminology that replaced the previous version of Terminologia Anatomica (1998). This modern version has already appeared in new editions of leading anatomical atlases and textbooks, including Netter’s Atlas of Human Anatomy, even though it was originally available only as a draft and the final version is different.