Nature.2021.06.26 [Sat, 26 Jun 2021]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Puzzling Inefficiency of H5N1 Influenza
Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry Jeong-Ki Kima,b, Ghazi Kayalia, David Walkera, Heather L. Forresta, Ali H. Ellebedya, Yolanda S. Griffina, Adam Rubruma, Mahmoud M. Bahgatc, M. A. Kutkatd, M. A. A. Alie, Jerry R. Aldridgea, Nicholas J. Negoveticha, Scott Kraussa, Richard J. Webbya,f, and Robert G. Webstera,f,1 aDivision of Virology, Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105; bKorea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; cDepartment of Infection Genetics, the Helmholtz Center for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany; dVeterinary Research Division, and eCenter of Excellence for Advanced Sciences, National Research Center, 12311 Dokki, Giza, Egypt; and fDepartment of Pathology, University of Tennessee Health Science Center, Memphis, TN 38106 Contributed by Robert G. Webster, May 10, 2010 (sent for review March 1, 2010) In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus emulsion H5N1 vaccines imported from China and Europe) virus in poultry and in humans have failed despite increased have failed to provide the expected level of protection against the biosecurity, quarantine, and vaccination at poultry farms. The ongo- currently circulating clade 2.2.1 H5N1 viruses (21). Despite the ing circulation of HP H5N1 avian influenza in Egypt has caused >100 attempted implementation of these measures, the current strat- human infections and remains an unresolved threat to veterinary and egies have limitations (22). public health. Here, we describe that the failure of commercially avail- Antibodies to the circulating virus strain had been detected in able H5 poultry vaccines in Egypt may be caused in part by the passive day-old chicks in Egypt (see below). -
Implementation of the Fizeau Aether Drag Experiment for An
Implementation of the Fizeau Aether Drag Experiment for an Undergraduate Physics Laboratory by Bahrudin Trbalic Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 c Massachusetts Institute of Technology 2020. All rights reserved. ○ Author................................................................ Department of Physics May 8, 2020 Certified by. Sean P. Robinson Lecturer of Physics Thesis Supervisor Certified by. Joseph A. Formaggio Professor of Physics Thesis Supervisor Accepted by . Nergis Mavalvala Associate Department Head, Department of Physics 2 Implementation of the Fizeau Aether Drag Experiment for an Undergraduate Physics Laboratory by Bahrudin Trbalic Submitted to the Department of Physics on May 8, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics Abstract This work presents the description and implementation of the historically significant Fizeau aether drag experiment in an undergraduate physics laboratory setting. The implementation is optimized to be inexpensive and reproducible in laboratories that aim to educate students in experimental physics. A detailed list of materials, experi- mental setup, and procedures is given. Additionally, a laboratory manual, preparatory materials, and solutions are included. Thesis Supervisor: Sean P. Robinson Title: Lecturer of Physics Thesis Supervisor: Joseph A. Formaggio Title: Professor of Physics 3 4 Acknowledgments I gratefully acknowledge the instrumental help of Prof. Joseph Formaggio and Dr. Sean P. Robinson for the guidance in this thesis work and in my academic life. The Experimental Physics Lab (J-Lab) has been the pinnacle of my MIT experience and I’m thankful for the time spent there. -
The Concept of Field in the History of Electromagnetism
The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”. -
Speed Limit: How the Search for an Absolute Frame of Reference in the Universe Led to Einstein’S Equation E =Mc2 — a History of Measurements of the Speed of Light
Journal & Proceedings of the Royal Society of New South Wales, vol. 152, part 2, 2019, pp. 216–241. ISSN 0035-9173/19/020216-26 Speed limit: how the search for an absolute frame of reference in the Universe led to Einstein’s equation 2 E =mc — a history of measurements of the speed of light John C. H. Spence ForMemRS Department of Physics, Arizona State University, Tempe AZ, USA E-mail: [email protected] Abstract This article describes one of the greatest intellectual adventures in the history of mankind — the history of measurements of the speed of light and their interpretation (Spence 2019). This led to Einstein’s theory of relativity in 1905 and its most important consequence, the idea that matter is a form of energy. His equation E=mc2 describes the energy release in the nuclear reactions which power our sun, the stars, nuclear weapons and nuclear power stations. The article is about the extraordinarily improbable connection between the search for an absolute frame of reference in the Universe (the Aether, against which to measure the speed of light), and Einstein’s most famous equation. Introduction fixed speed with respect to the Aether frame n 1900, the field of physics was in turmoil. of reference. If we consider waves running IDespite the triumphs of Newton’s laws of along a river in which there is a current, it mechanics, despite Maxwell’s great equations was understood that the waves “pick up” the leading to the discovery of radio and Boltz- speed of the current. But Michelson in 1887 mann’s work on the foundations of statistical could find no effect of the passing Aether mechanics, Lord Kelvin’s talk1 at the Royal wind on his very accurate measurements Institution in London on Friday, April 27th of the speed of light, no matter in which 1900, was titled “Nineteenth-century clouds direction he measured it, with headwind or over the dynamical theory of heat and light.” tailwind. -
Geophysical and Remote Sensing Study of Terrestrial Planets
GEOPHYSICAL AND REMOTE SENSING STUDY OF TERRESTRIAL PLANETS A Dissertation Presented to The Academic Faculty By Lujendra Ojha In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Earth and Atmospheric Sciences Georgia Institute of Technology August, 2016 COPYRIGHT © 2016 BY LUJENDRA OJHA GEOPHYSICAL AND REMOTE SENSING STUDY OF TERRESTRIAL PLANETS Approved by: Dr. James Wray, Advisor Dr. Ken Ferrier School of Earth and Atmospheric School of Earth and Atmospheric Sciences Sciences Georgia Institute of Technology Georgia Institute of Technology Dr. Joseph Dufek Dr. Suzanne Smrekar School of Earth and Atmospheric Jet Propulsion laboratory Sciences California Institute of Technology Georgia Institute of Technology Dr. Britney Schmidt School of Earth and Atmospheric Sciences Georgia Institute of Technology Date Approved: June 27th, 2016. To Rama, Tank, Jaika, Manjesh, Reeyan, and Kali. ACKNOWLEDGEMENTS Thanks Mom, Dad and Jaika for putting up with me and always being there. Thank you Kali for being such an awesome girl and being there when I needed you. Kali, you are the most beautiful girl in the world. Never forget that! Thanks Midtown Tavern for the hangovers. Thanks Waffle House for curing my hangovers. Thanks Sarah Sutton for guiding me into planetary science. Thanks Alfred McEwen for the continued support and mentoring since 2008. Thanks Sue Smrekar for taking me under your wings and teaching me about planetary geodynamics. Thanks Dan Nunes for guiding me in the gravity world. Thanks Ken Ferrier for helping me study my favorite planet. Thanks Scott Murchie for helping me become a better scientist. Thanks Marion Masse for being such a good friend and a mentor. -
Apparatus Named After Our Academic Ancestors, III
Digital Kenyon: Research, Scholarship, and Creative Exchange Faculty Publications Physics 2014 Apparatus Named After Our Academic Ancestors, III Tom Greenslade Kenyon College, [email protected] Follow this and additional works at: https://digital.kenyon.edu/physics_publications Part of the Physics Commons Recommended Citation “Apparatus Named After Our Academic Ancestors III”, The Physics Teacher, 52, 360-363 (2014) This Article is brought to you for free and open access by the Physics at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact [email protected]. Apparatus Named After Our Academic Ancestors, III Thomas B. Greenslade Jr. Citation: The Physics Teacher 52, 360 (2014); doi: 10.1119/1.4893092 View online: http://dx.doi.org/10.1119/1.4893092 View Table of Contents: http://scitation.aip.org/content/aapt/journal/tpt/52/6?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Crystal (Xal) radios for learning physics Phys. Teach. 53, 317 (2015); 10.1119/1.4917450 Apparatus Named After Our Academic Ancestors — II Phys. Teach. 49, 28 (2011); 10.1119/1.3527751 Apparatus Named After Our Academic Ancestors — I Phys. Teach. 48, 604 (2010); 10.1119/1.3517028 Physics Northwest: An Academic Alliance Phys. Teach. 45, 421 (2007); 10.1119/1.2783150 From Our Files Phys. Teach. 41, 123 (2003); 10.1119/1.1542054 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. -
RNA Viruses As Tools in Gene Therapy and Vaccine Development
G C A T T A C G G C A T genes Review RNA Viruses as Tools in Gene Therapy and Vaccine Development Kenneth Lundstrom PanTherapeutics, Rte de Lavaux 49, CH1095 Lutry, Switzerland; [email protected]; Tel.: +41-79-776-6351 Received: 31 January 2019; Accepted: 21 February 2019; Published: 1 March 2019 Abstract: RNA viruses have been subjected to substantial engineering efforts to support gene therapy applications and vaccine development. Typically, retroviruses, lentiviruses, alphaviruses, flaviviruses rhabdoviruses, measles viruses, Newcastle disease viruses, and picornaviruses have been employed as expression vectors for treatment of various diseases including different types of cancers, hemophilia, and infectious diseases. Moreover, vaccination with viral vectors has evaluated immunogenicity against infectious agents and protection against challenges with pathogenic organisms. Several preclinical studies in animal models have confirmed both immune responses and protection against lethal challenges. Similarly, administration of RNA viral vectors in animals implanted with tumor xenografts resulted in tumor regression and prolonged survival, and in some cases complete tumor clearance. Based on preclinical results, clinical trials have been conducted to establish the safety of RNA virus delivery. Moreover, stem cell-based lentiviral therapy provided life-long production of factor VIII potentially generating a cure for hemophilia A. Several clinical trials on cancer patients have generated anti-tumor activity, prolonged survival, and -
Study Toward the Development of Advanced
STUDY TOWARD THE DEVELOPMENT OF ADVANCED INFLUENZA VACCINES DISSERTATION Presented in partial fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Leyi Wang B.S.,M.S. Graduate Program in Veterinary Preventive Medicine The Ohio State University 2009 Dissertation Committee: Professor Chang-Won Lee, advisor Professor Y.M. Saif, Professor Daral J. Jackwood Professor Jeffrey T. LeJeune Copyright by Leyi Wang 2009 ABSTRACT Avian influenza is one of the most economically important diseases in poultry. Since it was found in Italy in 1878, avian influenza virus has caused numerous outbreaks around the world, resulting in considerable economic losses in poultry industry. In addition to affecting poultry, different subtypes of avian influenza viruses can infect many other species, thus complicating prevention and control. Killed and fowlpox virus vectored HA vaccines have been used in the field as one of effective strategies in a comprehensive control program to prevent and control avian influenza. Live attenuated vaccines for poultry are still under development. Live attenuated vaccines can closely mimic natural infection inducing long-lasting humoral and cellular immunity. In addition, they may be used for mass vaccination. However, concerns with spread of live vaccine viruses, mutation into virulent strains from live attenuated viruses, and reassortment of vaccine and field strains prevent recommending live vaccines as poultry vaccines in the field. For this reason, there are increasing interests in the development of in ovo vaccines that can reduce the risk of spreading the vaccine virus. Therefore, in the first three parts of our study, we have explored several strategies (NS1 truncation, temperature sensitive (ts) mutations, HA substitution, and non-coding region (NCR) mutations) to attenuate viruses to reach this goal. -
Vaccines: Past, Present and Future
HISTORICAL PERSPECTIVE Vaccines: past, present and future Stanley A Plotkin The vaccines developed over the first two hundred years since Jenner’s lifetime have accomplished striking reductions of infection and disease wherever applied. Pasteur’s early approaches to vaccine development, attenuation and inactivation, are even now the two poles of vaccine technology. Today, purification of microbial elements, genetic engineering and improved knowledge of immune protection allow direct creation of attenuated mutants, expression of vaccine proteins in live vectors, purification and even synthesis of microbial antigens, and induction of a variety of immune responses through manipulation of DNA, RNA, proteins and polysaccharides. Both noninfectious and infectious diseases are now within the realm of vaccinology. The profusion of new vaccines enables new populations to be targeted for vaccination, and requires the development of routes of administration additional to injection. With all this come new problems in the production, regulation and distribution of vaccines. http://www.nature.com/naturemedicine “The Circassians [a Middle Eastern people] perceived that of a thou- mild illness in humans, could prevent smallpox. This discovery not sand persons hardly one was attacked twice by full blown smallpox; only led to the eradication of smallpox in the twentieth century, but that in truth one sees three or four mild cases but never two that are also gave cachet to the idea of deliberate protection against exposure serious and dangerous; that in a word one never truly has that illness to infectious diseases. twice in life.” The history of vaccination as a deliberate endeavor began in the Voltaire, “On Variolation,” Philosophical Letters, 1734 laboratory of Louis Pasteur. -
The Immunological Basis for Immunization Series
The Immunological Basis for Immunization Series Module 23: Influenza Vaccines Immunization, Vaccines and Biologicals The immunological basis for immunization series: module 23: influenza vaccines (Immunological basis for immunization series; module 23) ISBN 978-92-4-151305-0 © World Health Organization 2017 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The immunological basis for immunization series: module 23: influenza vaccines. Geneva: World Health Organization; 2017 (Immunological basis for immunization series; module 23). Licence: CC BY-NC-SA 3.0 IGO. -
Project Physics Reader 4, Light and Electromagnetism
DOM/KEITRESUME ED 071 897 SE 015 534 TITLE Project Physics Reader 4,Light and Electromagnetism. INSTITUTION Harvard 'Jail's, Cambridge,Mass. Harvard Project Physics. SPONS AGENCY Office of Education (DREW), Washington, D.C. Bureau of Research. BUREAU NO BR-5-1038 PUB DATE 67 CONTRACT 0M-5-107058 NOTE . 254p.; preliminary Version EDRS PRICE MF-$0.65 HC-49.87 DESCRIPTORS Electricity; *Instructional Materials; Li ,t; Magnets;, *Physics; Radiation; *Science Materials; Secondary Grades; *Secondary School Science; *Supplementary Reading Materials IDENTIFIERS Harvard Project Physics ABSTRACT . As a supplement to Project Physics Unit 4, a collection. of articles is presented.. in this reader.for student browsing. The 21 articles are. included under the ,following headings: _Letter from Thomas Jefferson; On the Method of Theoretical Physics; Systems, Feedback, Cybernetics; Velocity of Light; Popular Applications of.Polarized Light; Eye and Camera; The laser--What it is and Doe0; A .Simple Electric Circuit: Ohmss Law; The. Electronic . Revolution; The Invention of the Electric. Light; High Fidelity; The . Future of Current Power Transmission; James Clerk Maxwell, ., Part II; On Ole Induction of Electric Currents; The Relationship of . Electricity and Magnetism; The Electromagnetic Field; Radiation Belts . .Around the Earth; A .Mirror for the Brain; Scientific Imagination; Lenses and Optical Instruments; and "Baffled!." Illustrations for explanation use. are included. The work of Harvard. roject Physics haS ...been financially supported by: the Carnegie Corporation ofNew York, the_ Ford Foundations, the National Science Foundation.the_Alfred P. Sloan Foundation, the. United States Office of Education, and Harvard .University..(CC) Project Physics Reader An Introduction to Physics Light and Electromagnetism U S DEPARTMENT OF HEALTH. -
Reading Materials on EM Waves and Polarized Light
22-1 Maxwell’s Equations In the 19th century, many scientists were making important contributions to our understanding of electricity, magnetism, and optics. For instance, the Danish scientist Hans Christian Ørsted and the French physicist André-Marie Ampère demonstrated that electricity and magnetism were related and could be considered part of one field, electromagnetism. A number of other physicists, including England’s Thomas Young and France’s Augustin-Jean Fresnel, showed how light behaved as a wave. For the most part, however, electromagnetism and optics were viewed as separate phenomena. James Clerk Maxwell was a Scottish physicist who lived from 1831 – 1879. Maxwell advanced physics in a number of ways, but his crowning achievement was the manner in which he showed how electricity, magnetism, and optics are inextricably linked. Maxwell did this, in part, by writing out four deceptively simple equations. Physicists love simplicity and symmetry. To a physicist, it is hard to beat the beauty of Maxwell’s equations, shown in Figure 22.1. To us, they might appear to be somewhat imposing, because they require a knowledge of calculus to fully comprehend them. These four equations are immensely powerful, however. Together, they hold the key to understanding much of what is covered in this book in Chapters 16 – 20, as well as Chapters 22 and 25. Seven chapters boiled down to four equations. Think how much work we would have saved if we had just started with Maxwell’s equations instead, assuming we understood all their implications immediately. rrr Qdr Φ Equation 1: EdA•=Equation 3: Edl •=− B term added ∫∫ε dt by Maxwell 0 rrr r dΦ Equation 2: BdA•=0 Equation 4: Bdl •=µµε I + E ∫∫000enclosed dt Figure 22.1: Maxwell’s equations.