General Concept ETCS Interlocking (Rev

Total Page:16

File Type:pdf, Size:1020Kb

General Concept ETCS Interlocking (Rev ES Innenanlagen General Concept ETCS Interlocking (rev. 76445) General Concept ETCS Interlocking Version 1.01_published, 30.4.2018 1 Disclaimer This document is a DRAFT version which is still under construction. Its content may change in the ongoing concept phase of SmartRail 4.0. The document is not completely verified and is not finalized by now. The document is published to enable an open discussion of the ongoing work of the SmartRail 4.0 program. Links and references inside of this document may refer to other documents inside of the program SmartRail 4.0, that may not be published at this stage. 2 Contents 1 Disclaimer . 1 2 Contents . 1 3 Glossary . 3 4 Introduction to objectives and approach / Scope of this document . 5 4.1 Introduction and scope . 5 4.2 Process-model in this document . 5 4.3 Premises and requirements . 6 4.3.1 General premises . 6 4.3.2 The general requirements of the ETCS interlocking (EI) . 7 4.3.3 Requirements for the EI system limits . 7 4.3.4 Requirements for the application conditions of the EI (to be designed) . 8 5 Functional description of the entire EI system . 9 5.1 Fundamental working principles of the EI . 9 5.2 Basic conditions for a safe production . 9 5.3 Basic conditions . 10 5.3.1 Safe use . 10 5.3.1.1 Knowledge of the properties, capabilities and states of a moveable object . 10 5.3.1.2 Error-free railway network topology . 11 5.3.2 Safely locked states of trackside assets . 11 5.3.2.1 Check the necessary element states before granting any movement permission . 12 5.3.2.2 Prevention of conflicting change of element states . 12 5.3.2.3 Element states monitoring . 12 5.3.3 Movement only within reserved topology section . 12 5.3.3.1 Effects of localization inaccuracies in the steering and the MP protection . 13 5.3.3.2 Handling localization inaccuracies . 15 5.3.4 Compliance with geometric distances assurance . 16 5.3.4.1 Identification of geometric distances . 16 1/34 SBB CFF FFS 2018-05-01 01:31 ES Innenanlagen General Concept ETCS Interlocking (rev. 76445) 5.3.4.2 Speed and direction of movement . 17 5.4 Conceptual approach - safety in geographic areas . 17 5.4.1 Working principles . 17 5.4.1.1 Utilization permissions (danger areas and movement permissions) . 17 5.4.1.2 Risk path . 19 5.4.1.3 Requesting and reserving a movement permission . 19 5.4.1.4 Utilization conditions (UC) . 23 5.4.1.5 Geometric overlaps of MPs and DAs . 24 5.4.1.6 Differentiation between DA-request and DA-demand . 28 5.4.1.7 Removing or changing a danger area . 28 5.4.1.8 Overriding infrastructure object element states (IOES) . 29 5.5 Generic approach EI core . 30 5.6 Functional architecture and scope of the EI . 30 5.6.1 EI Key functions . 31 5.6.1.1 Not shown in Diagram . 33 6 References . 34 2/34 SBB CFF FFS 2018-05-01 01:31 ES Innenanlagen General Concept ETCS Interlocking (rev. 76445) 3 Glossary Term Abbrev. Description Danger Area DA A danger area is an interleaving free set of topology fragments with the same utilization conditions. A danger area represents e.g. a worksite. ETCS Interlocking EI ETCS FSS based interlocking comprising the RBC. Its dynamic, rule based and geometric safety logic controls all movements of the objects and all changes of the state of the trackside assets within the EIs effective range. All operational logic is moved to the higher-level systems. GLAT GLAT Guided Movable Object Infrastructure IO An Infrastructure Object represents a track side asset in the OC. Object Examples: a point, a level crossing, a track segment, a signal Infrastructure IOE The logical representation in form of edges and/or vectors of elements of the track side assets. This Object Element logical representation is - among other things - utilised to describe the track network topology and for communication purposes between software components. Example: a single switch would consist of either two non-directional edges or four (directed) vectors, representing the trafficability possibilities 'through' and 'deflceting'. Infrastructure IOES The current state of an Infrastructure Object Element. Object Element Example: The logical representation of the point in reverse direction (= an IOE) is "trafficable" State Moveable Object MOB A moveable object is any object in the network topology (moving or not) that can pose a threat or be threatened by being near to an utilization area (movement permission, danger area). MOBs are objects that are detected as such by a RTSA. They were either localiced and/or registered by the sensors or subsystems of the RTSA. MOBs may create a too high safety risk compared to the application safety targets and their movement may be controlled by a RTSA. Movement MP A movement permission is an authorization for a moveable object to move. A movement permission Permission guarantees that the movement can be performed safely. A MP includes, for example, the path (a gap- and overlap-free sequence of topology fragments), the direction of travel, the complete speed profile that matches the path and the number of stops. A movement permission always refers to exactly one movable object. Object Controller OC The Object Controller connects the ETCS Interlocking (EI) with legacy interlockings and with the trackside assets. Object OI The Object Identification manages all moving and stationary objects within the geographic safety area of Identification the interlocking.
Recommended publications
  • PROVÁDĚCÍ NAŘÍZENÍ KOMISE (EU) 2019/773 Ze Dne 16
    27.5.2019 CS Úřední věstník Evropské unie L 139 I/5 PROVÁDĚCÍ NAŘÍZENÍ KOMISE (EU) 2019/773 ze dne 16. května 2019 o technické specifikaci pro interoperabilitu týkající se subsystému „provoz a řízení dopravy“ železničního systému v Evropské unii a o zrušení rozhodnutí 2012/757/EU (Text s významem pro EHP) EVROPSKÁ KOMISE, s ohledem na Smlouvu o fungování Evropské unie, s ohledem na směrnici Evropského parlamentu a Rady (EU) 2016/797 ze dne 11. května 2016 o interoperabilitě železničního systému v Evropské unii (1) a zejména na čl. 5 odst. 11 uvedené směrnice, vzhledem k těmto důvodům: (1) Článek 11 rozhodnutí Komise v přenesené pravomoci (EU) 2017/1474 (2) vymezuje konkrétní cíle pro vypracování, přijetí a přezkum technických specifikací pro interoperabilitu (TSI) železničního systému v Unii. (2) Podle čl. 3 odst. 5 písm. b) a f) rozhodnutí (EU) 2017/1474 by TSI měly být přezkoumány s cílem zohlednit vývoj železničního systému Unie a souvisejících činností v oblasti výzkumu a inovací a aktualizovat odkazy na normy. (3) Podle čl. 3 odst. 5 písm. c) rozhodnutí (EU) 2017/1474 by TSI měly být přezkoumány s cílem uzavřít zbývající otevřené body. Je třeba zejména vymezit rozsah otevřených bodů týkajících se provozu a rozlišit mezi příslušnými vnitrostátními předpisy a pravidly vyžadujícími harmonizaci prostřednictvím práva Unie s cílem umožnit přechod na interoperabilní systém a vymezit optimální úroveň technické harmonizace. (4) Dne 22. září 2017 Komise v souladu s čl. 19 odst. 1 nařízení Evropského parlamentu a Rady (EU) 2016/796 (3) požádala Agenturu Evropské unie pro železnice (dále jen „agentura“), aby připravila doporučení pro provedení výběru konkrétních cílů stanovených v rozhodnutí (EU) 2017/1474.
    [Show full text]
  • the Swindon and Cricklade Railway
    The Swindon and Cricklade Railway Construction of the Permanent Way Document No: S&CR S PW001 Issue 2 Format: Microsoft Office 2010 August 2016 SCR S PW001 Issue 2 Copy 001 Page 1 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS 1 Document Status Record Status Date Issue Prepared by Reviewed by Document owner Issue 17 June 2010 1 D.J.Randall D.Herbert Joint PW Manager Issue 01 Aug 2016 2 D.J.Randall D.Herbert / D Grigsby / S Hudson PW Manager 2 Document Distribution List Position Organisation Copy Issued To: Copy No. (yes/no) P-Way Manager S&CR Yes 1 Deputy PW Manager S&CR Yes 2 Chairman S&CR (Trust) Yes 3 H&S Manager S&CR Yes 4 Office Files S&CR Yes 5 3 Change History Version Change Details 1 to 2 Updates throughout since last release SCR S PW001 Issue 2 Copy 001 Page 2 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS Table of Contents 1 Document Status Record ....................................................................................................................................... 2 2 Document Distribution List ................................................................................................................................... 2 3 Change History .....................................................................................................................................................
    [Show full text]
  • Influence of Train Control System on Railway Track Capacity
    DAAAM INTERNATIONAL SCIENTIFIC BOOK 2012 pp. 419-426 CHAPTER 36 INFLUENCE OF TRAIN CONTROL SYSTEM ON RAILWAY TRACK CAPACITY HARAMINA, H.; BRABEC, D. & GRGIC, D. Abstract: The basic advantage of the train control methods based on the moving block technology compared to the fixed blocks where the headways of the slower trains, regarding their longer blocking times affects negatively the line capacity, lies in the fact that the position and the length of the moving blocks adapts to the position, dynamic characteristics, and actual speed of the successive train. Regarding a higher possibility for influence on the train movement characteristic during the moving block train operation, better traffic fluidity with more regular traffic flow can be achieved. Considering this fact an amount of regular recovery and buffer times needed for railway timetable stability can be decreased and thus more train paths in a particular dedicated time window can be added. In this way the moving block technology can increase the capacity of a railway line, especially in case of high density lines with significant heterogeneity of traffic. Key words: train control system, railway infrastructure capacity, moving block Authors´ data: Dr. Sc. Haramina, H[rvoje]; dipl.ing. Brabec, D[ean]* Dr. Sc. Grgić, D[amir]**; *University of Zagreb, Faculty of Transport and Traffic Sciences, Vukelićeva 4, Zagreb, Croatia, **Hrvatske željeznice, Mihanovićeva 12, Zagreb, Croatia; [email protected], [email protected], [email protected] This Publication has to be referred as: Haramina H[rvoje]; Brabec, D[ean] & Grgić, D[amir] (2012). Influence of Train Control System on Railway Track Capacity, Chapter 36 in DAAAM International Scientific Book 2012, pp.
    [Show full text]
  • Structure Gauge Measuring Equipment Using Laser Range
    PAPER Structure Gauge Measuring Equipment Using Laser Range Scanners and Structure Gauge Management System Takashi TOYAMA Signalling Systems Laboratory, Signalling and Transport Information Technology Division Nozomi NAGAMINE Image Analysis and IT Laboratory, Signalling and Transport Information Technology Division Tatsuya OMORI Kenichi KITAO Signalling Systems Laboratory, Signalling and Transport Information Technology Division (Former) Ryuta NAKASONE Image Analysis and IT Laboratory, Signalling and Transport Information Technology Division Periodic measurement of the structure gauge is essential to ensure safe train operation. Measuring the clearance gauge however, is time and labor intensive given the vast number of trackside facilities. An inexpensive and efficient measuring device using laser range scanners was therefore developed. A management system is also being developed, which maps mea- sured three-dimensional point cloud data to facility data. This paper describes the problems and solutions related to applying the laser range scanners for structural gauging, and pres- ents results obtained from experiments. This paper also describes progress achieved in the development of the management system. Keywords: laser range scanner, LiDAR, structure gauge, clearance car, facility management, 3-D point cloud 1. Introduction ing developed. This paper describes the problems and solutions relat- The structure gauge or clearance gauge is the space ed to applying the laser range scanners for structure gaug- around the track, into which no part of a trackside struc- ing, and p resents r esults obtain ed f rom experi ments. This ture shou ld enter o n any a cc ount. Figu re 1 sh ow s an ex- paper a lso des cribes progr es s ach ieved in the dev elopm ent ample of the structure gauge applied on railways in Japan.
    [Show full text]
  • Next Generation Train Control (NGTC): More Effective Railways Through the Convergence of Main-Line and Urban Train Control Systems
    Available online at www.sciencedirect.com ScienceDirect Transportation Research Procedia 14 ( 2016 ) 1855 – 1864 6th Transport Research Arena April 18-21, 2016 Next Generation Train Control (NGTC): more effective railways through the convergence of main-line and urban train control systems Peter Gurník a,* aUNIFE – The European Rail Industry, 221 avenue Louise, B-1050 Brussels, Belgium Abstract The main scope of Next Generation Train Control (NGTC) project is to analyse the commonality and differences of required functionality for mainline and urban lines and develop the convergence of both European Train Control System (ETCS) and Communication Based Train Control (CBTC) systems, determining the level of commonality of architecture, hardware platforms, and system design that can be achieved. This will be accomplished by building on the experience of ETCS and its standardised train protection kernel, where the different manufacturers can deliver equipment based on the same standardized specifications and by using the experience the suppliers have gained by having developed very sophisticated and innovative CBTC systems around the world. The paper focuses on the analyses of the already produced NGTC Functional Requirements Specifications and is summarizing other project activities on various train control technology developments suitable for future train control systems. © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (©http://creativecommons.org/licenses/by-nc-nd/4.0/ 2016The Authors. Published by Elsevier B.V..). PeerPeer-review-review under under responsibility responsibility of Road of Road and Bridgeand Bridge Research Research Institute Institute (IBDiM) (IBDiM). Keywords: Railways; signalling; automation; ERTMS / ETCS; CBTC; ATO; ATP; ATS; FRS, SRS; Moving Block; IP Radio Communication; GNSS * Corresponding author.
    [Show full text]
  • Enhancing Interoperability for Facilitation of International Railway Transport
    ENHANCING INTEROPERABILITY FOR FACILITATION OF INTERNATIONAL RAILWAY TRANSPORT This study was prepared by Transport Division ESCAP. The draft of the study was prepared by Mr. Vasile-Neculai OLIEVSCHI, Consultant, under the supervision of Mr. Sandeep Raj Jain, Economic Affairs Officer, Transport Division ESCAP. The views expressed in this guide are those of the authors and do not necessarily reflect the views of the United Nations Secretariat. The opinions, figures and estimates set forth in this guide are the responsibility of the authors, and should not necessarily be considered as reflecting the views or carrying the endorsement of the United Nations. The designations employed and the presentation of the material in this study do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of firm names and commercial products does not imply the endorsement of the United Nations. This study is issued without formal editing. ______________________ ENHANCING INTEROPERABILITY FOR FACILITATION OF INTERNATIONAL RAILWAY TRANSPORT Bangkok, 2018 Table of Contents EXECUTIVE SUMMARY .................................................................................................................... 1 I. BACKGROUND ......................................................................................................................... 3 II. ASIAN
    [Show full text]
  • ERTMS/ETCS - Indian Railways Perspective
    ERTMS/ETCS - Indian Railways Perspective P Venkata Ramana IRSSE, MIRSTE, MIRSE Abstract nal and Balise. Balises are passive devices and gets energised whenever Balise Reader fitted on Locomo- European Railway Traffic Management System tive passes over it. On energisation, balises transmits (ERTMS) is evolved to harmonize cross-border rail telegrams to OBE. Telegram may consist of informa- connections for seamless operations across European tion about aspect of Lineside Signal, Gradients etc., nations. ERTMS is stated to be the most performant Balises are generally grouped and unique identifica- train control system which brings significant advan- tion will be provided to each balise. It helps to detect tages in terms of safety, reliability, punctuality and the direction of train. There four types of balises ex- traffic capacity. ERT.MS is evolving as a global stan- ist based their usage - Switchable, Infill, Fixed and dard. Many countries outside Europe - US, China, Repositioning balises. Switchable balises will be pro- Taiwan, South Korea and Saudi Arabia have adopted vided near lineside signals and they transmit aspect ERTMS standards for train traffic command and con- of lineside signal, permanent speed restrictions, gra- trol. dient information etc., Infill balises are provided in advance of signals to convey aspect of lineside signals earlier than Switchable balises. Fixed balises convey 1 Introduction information in regard to temporary speed restrictions and Repositioning balises provides data corrections. Signalling component of ERTMS has basically Balises transmit data in long or short telegrams four components - European Train Control System and those pertaining to direction. They are of two (ETCS) with Automatic Train Protection System, types - standard and reduced.
    [Show full text]
  • Network Rail a Guide to Overhead Electrification 132787-ALB-GUN-EOH-000001 February 2015 Rev 10
    Network Rail A Guide to Overhead Electrification 132787-ALB-GUN-EOH-000001 February 2015 Rev 10 Alan Baxter Network Rail A Guide to Overhead Electrification 132787-ALB-GUN-EOH-000001 February 2015 Rev 10 Contents 1.0 Introduction ���������������������������������������������������������������������������������������������������������������������1 2.0 Definitions �������������������������������������������������������������������������������������������������������������������������2 3.0 Why electrify? �������������������������������������������������������������������������������������������������������������������4 4.0 A brief history of rail electrification in the UK �����������������������������������������������������5 5.0 The principles of electrically powered trains ������������������������������������������������������6 6.0 Overhead lines vs. third rail systems ����������������������������������������������������������������������7 7.0 Power supply to power use: the four stages of powering trains by OLE 8 8.0 The OLE system ������������������������������������������������������������������������������������������������������������10 9.0 The components of OLE equipment ��������������������������������������������������������������������12 10.0 How OLE equipment is arranged along the track ������������������������������������������17 11.0 Loading gauges and bridge clearances ��������������������������������������������������������������24 12.0 The safety of passengers and staff ������������������������������������������������������������������������28
    [Show full text]
  • View / Open TM Database Composite.Pdf
    • • • • TRANSPORTATION-MARKINGS • DATABASE • COMPOSITE CATEGORIES • CLASSIFICATION & INDEX • • • -­ • III III • 1 TRANSPORTATION-MARKINGS: A STUDY IN CO.MMUNICATION MONOGRAPH SERIES Alternate Series Title: An Inter-modal Study of Safety Aids Transportatiol1-Markings Database Alternate T-M Titles: Transport [ation] Mark [ing]s / Transport Marks / Waymarks T-MFoundations, 4th edition, 2005 (Part A, Volume I, First Studies in T-M) (3rd edition, 1999; 2nd edition, 1991) Composite Categories A First Study in T-M: The US, 2nd edition, 1993 (Part B, Vol I) Classification & Index International Marine Aids to Navigation, 2nd edition, 1988 (parts C & D, Vol I) [Unified First Edition ofParts A-D, University Press ofAmerica, 1981] International Traffic Control Devices, 2nd edition, 2004 (Part E, Volume II, Further Studies in T-M) (lst edition, 1984) Part Iv Volume III, Additional Studies, International Railway Signals, 1991 (Part F, Vol II) International Aero Navigation Aids, 1994 (Part G, Vol II) Transportation-Markil1gs: A Study il1 T-M General Classification with Index, 2nd edition, 2004 (Part H, Vol II) (1st edition, 1994) Commllnication Monograph Series Transportation-Markings Database: Marine Aids to Navigation, 1st edition, 1997 (I'art Ii, Volume III, Additional Studies in T-M) TCDs, 1st edition, 1998 (Part Iii, Vol III) Railway Signals. 1st edition, 2000 (part Iiii, Vol III) Aero Nav Aids, 1st edition, 2001 (Part Iiv, Vol III) Composite Categories Classification & Index, 1st edition, 2006 (part Iv, Vol III) (2nd edition ofDatabase, Parts Ii-v,
    [Show full text]
  • Clearance of Derailment Guards in Metro Systems 1. As Per Para 7.1 Of
    Annexure‐XII Clearance of derailment guards in Metro systems 1. As per para 7.1 of ‘Standards of Track structures for Metro Railway/MRTS system’, the derailment guard should be provided inside/outside of running rail, and the lateral clearance between the running rail and the derailment guard shall be 250±40mm. Thus the maximum clearance permitted is 290mm, and the minimum is 210mm. In the following paras, the impact of this clearance on the safe operation of Metro systems has been analysed. Analysis has also been made to arrive at the minimum up‐stand clearance required to accommodate the various Fastening systems approved for use in the Metro systems. Based on the above analysis, recommendations for the up‐stand clearance has been arrived at. The impact of up‐stand clearance on minimum plinth width requirement has also been brought out. 2. As per SoD generally adopted by Metro systems, the following track and Rolling stock parameters adopted by Metro systems have been taken for the analysis. 2.1. Track. Gauge‐1435mm Rail head width(UIC 60)‐72mm Rail height(UIC 60) ‐172mm. Up‐stand thickness‐200mm 2.2. Rolling stock wheel set. Wheel gauge back to back distance‐1360mm Minimum projection of flange of new wheel‐28mm Maximum projection of flange of worn wheel‐36mm Maximum thickness of wheel flange‐32.5mm Minimum thickness of wheel flange‐22mm Minimum width of wheel‐135± 2.3. Wheel flange clearance to rail gauge face When the wheel set is in central position with respect to track, the clearance between rail and wheel works out to (1435‐1360‐ 2x32.5)/2=5mm.
    [Show full text]
  • GUIDANCE NOTE PERMANENT WAY – Planning, Inspection
    Ref No: HGR-A0401 Issue No: 01 Issue Date: April 2018 HERITAGE RAILWAY ASSOCIATION GUIDANCE NOTE PERMANENT WAY – Planning, Inspection & Maintenance Purpose This document describes good practice in relation to its subject to be followed by Heritage Railways, Tramways and similar bodies to whom this document applies. Endorsement This document has been developed with, and is fully endorsed by, Her Majesty’s Railway Inspectorate (HMRI), a directorate of the Office of Rail and Road (ORR). Disclaimer The Heritage Railway Association has used its best endeavours to ensure that the content of this document is accurate, complete and suitable for its stated purpose. However it makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems of work or operation. Accordingly the Heritage Railway Association will not be liable for its content or any subsequent use to which this document may be put. Supply This document is published by the Heritage Railway Association (HRA). Copies are available electronically via its website https://www.hra.uk.com/guidance-notes Issue 01 page 1 of 11 © Heritage Railway Association 2018 The Heritage Railway Association, Limited by Guarantee, is Registered in England and Wales No. 2226245 Registered office: 2 Littlestone Road, New Romney, Kent, TN28 8PL HGR-A0401-Is01 ______ Permanent Way - Planning, Inspection & Maintenance Users of this Guidance Note should check the HRA website https://www.hra.uk.com/guidance-notes to ensure that they have the
    [Show full text]
  • LUCKNOW | THURSDAY | SEPTEMBER 10, 2020 City 02
    ,%% - B & C 1 & C 1 C .012.34&$# ./ . 0 1.23 /.24 ! > 542=5 =--22A') A3.44--'4 4)5)3!-% 5-)53!4%2 5!=-- !/5-) -3->2424'4! 2!5232 5!=25 4523! 5A42.?A% ) ",-+;:../ 86; D 4 11 4*'*'*5 4#% %* + P !4%4)5 fter their unsuccessful bids Ato breach the Line of Actual Control (LAC) in the last few days, China has start- ed deploying more troops on * the Pangong Tso (lake) indi- cating that it was not ready for immediate disengagement. Q %%%R ) )%% The Chinese have also added muscle to their air power # + by deploying more than 150 aircraft and helicopters on their side of the LAC in Ladakh. Not willing to take any chances the '3' IAF has also deployed its front line fighter jets including the n a day of high drama wit- SU-30, MIG-29, and Jaguars at Inessed in Mumbai’s upmarket forward bases all along the Pal Hill area, the demolition 4,000 km long LAC stretching squad of the Shiv Sena-run from Ladakh in the west to Brihanmumbai Municipal to a virtual trial of destruction Arunachal Pradesh in the east. Corporation (BMC) pulled caused by a swift and elaborate This ramping up of troops down Kangana Raut’s office at demolition carried out by the by China comes days after Bandra (illegal portions) by the BMC workers at her bungalow, India, in a defensive move on time the Bombay High Court which houses the office of her August 29-30, occupied heights ordered a stay on the process, film production company, in the north bank of the lake ! # ! even as an aggrieved actress Manikarnika Films Pvt Ltd.
    [Show full text]