Tramway Track Standard

Total Page:16

File Type:pdf, Size:1020Kb

Tramway Track Standard SYDNEY TRAMWAY MUSEUM TRAMWAY TRACK STANDARD MARCH 2016NOVEMBER 2019 SYDNEY TRAMWAY MUSEUM Document Control Record 1. Document Details: Name: Tramway track Standard Number STM6024 Version Number: 1.89 Document Status: Working Draft X Approved for Issue Archived Next Scheduled Review Date: 2. Version History: Version Number Date Reason/Comments 1.0 20/01/2007 Initial issue 1.1 09/01/2009 Changed Report title 1.2 09/07/2009 Added Tie Bar drawing 1.3 31/05/2010 Changes made to satisfy the 2009 ITSRR audit. 1.4 31/07/2010 Changes made to satisfy the 2009 ITSR audit. 1.5 03/09/2010 Updated Appendix D and other minor changes. 1.6 15/05/2011 Added the Pandrol Information as the RNP uses this equipment 1.7 21/8/2015 Added Loading gauge drawing and reference to STM6072 1.8 31/03/2016 Amended Distribution List format Better defining the sleeper standard (Good, Fair, Poor) by photos 1.9 21/11/2019 and description in Section 10.11. Approved by Signature & Date 3. Distribution List Position Date Location of Documents Rail Safety Manager Original held on GOOGLE secure Website STM WEB SITE Updated regularly and put onto the STM Web site. STM Office STM Office Computer STM Office STM Office cupboard STM6024 Tramway track Standard Page 2 of 55 Version 1.9 – 21/11/2019 SYDNEY TRAMWAY MUSEUM 1. Purpose To explain the various tramway track standards at the Sydney tramway Museum. Also the purpose of this document is to set down, in printed form, a history of the construction, operation and maintenance of the STM for the benefit of future generations called upon to further the aims of the society. 2. Scope This standard applies to the design, construction and maintenance of all tramway tracks installed by the Sydney Tramway Museum. 3. Responsibilities The Infrastructure staff at STM must follow these processes in this manual. 4. References This document is an update of the work done by W.M. Denham in 1994 whose work is noted with grateful appreciation. Also grateful assistance was given by Richard Clark, Chief Engineer for the Sydney Tramway Museum in confirming the engineering details given, and Robert Cowing, Construction Supervisor for the museum in confirming the construction methods outlined. STM6027 – Tramway Maintenance – Track and Structure Inspection Report STM6028 - Track Inspection procedure STM6033 - Occurrence Report STM6026 - Speed & Stopping Distance document 5. Definitions OIC Officer in Charge (on the day) STM Sydney Tramway Museum: the trading name of South Pacific Electric Railway Co- Operative Society Limited for tram activities, therefore references to STM. SPER South Pacific Electric Railway Co-Operative Society Limited The Board refers to the Board of Directors at STM Ins Inches Kg/m Kilograms per metre Km/h Kilo meters per hour Lbs Pounds (weight) lb/yd Pounds per yard m Metres NSWGT New South Wales Government Tramways STM6024 Tramway track Standard Page 3 of 55 Version 1.9 – 21/11/2019 SYDNEY TRAMWAY MUSEUM 6. Table of Contents 7. Preface............................................................................................................................6 8. Introduction....................................................................................................................7 8.3 Tramway Main Line................................................................................................8 8.4 Standards.................................................................................................................8 8.5 Minimum Standards...............................................................................................8 8.6 Tram Speeds...........................................................................................................8 9. Design...........................................................................................................................10 9.1 Track Layout..........................................................................................................10 9.2 Rail Joints...............................................................................................................10 9.3 Loops and Double Track.....................................................................................10 9.4 Track Centres........................................................................................................11 9.5 Structure Gauge....................................................................................................11 9.6 Curves....................................................................................................................11 Diagram: 1 SINGLE TRACK STRUCTURE GAUGE..........................................14 Diagram: 2 DOUBLE TRACK STRUCTURE GAUGE..........................................14 9.7 Superelevation......................................................................................................15 9.8 Grades....................................................................................................................15 10. Construction.................................................................................................................17 10.1 The Road Bed.......................................................................................................17 10.2 Track Standards – Generally..............................................................................17 10.2 Tram Track.............................................................................................................17 10.3 Tramway Rails.......................................................................................................18 10.4 Rail Foot Dimensions...........................................................................................18 10.5 Rail Stress Conditions..........................................................................................18 10.6 Handling Rails.......................................................................................................19 10.7 Main Line Rails......................................................................................................19 10.8 Used Rails..............................................................................................................19 10.9 Check Rails............................................................................................................19 10.10 Guard Rails............................................................................................................20 10.11 Sleepers.................................................................................................................20 10.12 Fastenings and Attachments..............................................................................20 10.13 Ballasted Track......................................................................................................21 10.14 Paved Track...........................................................................................................21 10.15 Points......................................................................................................................22 10.16 Points Pits..............................................................................................................22 10.17 Construction Standards.......................................................................................23 11 Maintenance.................................................................................................................28 11.1 Diagrammatic Layout...........................................................................................28 11.2 Check Sheets and Schedules.............................................................................28 11.3 Maintenance Standards.......................................................................................28 11.4 Track Maintenance Limits and Speed Restrictions.........................................28 11.5 Replacing Damaged and Worn Rails................................................................28 11.6 Track Inspection schedule – Generally.............................................................28 11.7 Sleeper Maintenance and Replacement...........................................................29 11.8 Poor Sleeper And Fasteners...............................................................................29 11.9 Prioritisation of Defects........................................................................................29 11.10 Notification, Imposition and Removal of Protection/Restriction Signs.........29 11.11 Type of Protection/Restriction Signs.................................................................30 11.12 Review of Technical Expertise...........................................................................30 APPENDIX A – INSPECTION REPORT SHEETS............................................................38 APPENDIX B – EXISTING TRACK..................................................................................39 STM6024 Tramway track Standard Page 4 of 55 Version 1.9 – 21/11/2019 SYDNEY TRAMWAY MUSEUM APPENDIX C – DETAILS OF TIE BAR............................................................................45 APPENDIX D - MAINTENANCE LIMITS FOR STRAIGHT AND CURVED TRAM TRACK ..............................................................................................................................46 APPENDIX E - N.S.W.G.T. RIGHT TURNOUT DRAWING...........................................48 APPENDIX F - LOADING GAUGE………………………………………...…………….49 APPENDIX G–
Recommended publications
  • INDIAN RAILWAYS SCHEDULE of DIMENSIONS 1676Mm Gauge (BG)
    INDIAN RAILWAYS SCHEDULE OF DIMENSIONS 1676mm Gauge (BG) REVISED, 2004 SCHEDULE OF DIMENSIONS-1676mm, GAUGE SHEDULE OF DIMENSIONS-1676MM GAUGE Schedule of Dimensions for Indian Railways, 1676mm Gauge Dear Sir/Dear Sirs, With their circular letter No. 735-W. of 1922, the Railway Board issued a Schedule of Maximum, Minimum and Recommended Dimensions to be observed on all 1676mm gauge Railways in India. In that Schedule, certain dimensions of the previous schedule of the year 1913 were modified with the object of permitting the use of enlarged rolling stock. 2. The Schedule of Dimensions of 1922 contained two distinct sections, namely, a schedule of "Maximum and Minimum Dimensions" which was considered to enable the proposed larger vehicles to run with about the same degree of safety as that which was previously obtained on the older Railways with existing stock, and a schedule of "Recommended Dimensions" intended to provide approximately the same clearances from fixed structures for the future larger vehicles as the 1913 schedule gave for existing vehicles. 3. In their circular letter No. 232-Tech.dated the 8th February, 1926, the Railway Board gave instructions that the Recommended Dimensions given in the 1922 Schedule were to be observed on important Railways in all new works and alterations to existing works. These orders were modified in letter No. 232-Tech. of the 26th April, 1926, which allowed a relaxation in the case of certain recommended dimensions, the adoption of which would involve heavy expenditure in remodeling works. 4. In 1929, it was found desirable further to amend the Schedule of 1922 in order to introduce certain improve- ments in the light of experience gained since it was issued, and to provide the clearances required by electric traction equipment on lines which were likely to be electrified in the future.
    [Show full text]
  • Shared Rail Corridor Adjacent Track Accident Risk Analysis
    USDOT Tier 1 University Transportation Center Final Report NURail Project ID: NURail2013-UIUC-R08 Shared Rail Corridor Adjacent Track Accident Risk Analysis By M. Rapik Saat Research Assistant Professor – Rail Transportation and Engineering Center (RailTEC) University of Illinois at Urbana – Champaign [email protected] and Chen-Yu Lin Masters Student of Civil and Environmental Engineering University of Illinois at Urbana – Champaign [email protected] 1 DISCLAIMER Funding for this research was provided by the NURail Center, University of Illinois at Urbana - Champaign under Grant No. DTRT12-G-UTC18 of the U.S. Department of Transportation, Office of the Assistant Secretary for Research & Technology (OST-R), University Transportation Centers Program. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. 2 USDOT Tier 1 University Transportation Center Final Report TECHNICAL SUMMARY Title Shared Rail Corridor Adjacent Track Accident Risk Analysis Introduction Safety is a high priority for any rail system. There are several safety concerns associated with operating passenger and freight trains on shared-use rail corridors (SRC). Adjacent track accident (ATA) is one of the most important concerns. ATA mainly refers to a train accident scenario where a derailed equipment intrudes adjacent tracks, causing operation disturbance and potential subsequent train collisions on the adjacent tracks. Other ATA scenarios include collisions between trains on adjacent tracks (raking), turnouts and railroad crossings.
    [Show full text]
  • Rail Accident Report
    Rail Accident Report Derailment of a tram at Pomona, Manchester 17 January 2007 Report 09/2008 April 2008 This investigation was carried out in accordance with: l the Railway Safety Directive 2004/49/EC; l the Railways and Transport Safety Act 2003; and l the Railways (Accident Investigation and Reporting) Regulations 2005. © Crown copyright 2008 You may re-use this document/publication (not including departmental or agency logos) free of charge in any format or medium. You must re-use it accurately and not in a misleading context. The material must be acknowledged as Crown copyright and you must give the title of the source publication. Where we have identified any third party copyright material you will need to obtain permission from the copyright holders concerned. This document/publication is also available at www.raib.gov.uk. Any enquiries about this publication should be sent to: RAIB Email: [email protected] The Wharf Telephone: 01332 253300 Stores Road Fax: 01332 253301 Derby UK Website: www.raib.gov.uk DE21 4BA This report is published by the Rail Accident Investigation Branch, Department for Transport. Derailment of a tram at Pomona, Manchester 17 January 2007 Contents Introduction 4 Summary of the report 5 Key facts about the accident 5 Identification of immediate cause, causal and contributory factors and underlying causes 6 Recommendations 6 The Accident 7 Summary of the accident 7 The parties involved 8 Location 9 The tram 9 Events during the accident 9 Events following the accident 10 The Investigation 11 Sources of
    [Show full text]
  • PRACTICE-ORIENTED TRAMWAY TRACK CONDITION MONITORING and GIS SYSTEM Ákos VINKÓ, Phd Student, Budapest University of Technology and Economics, Hungary
    PRACTICE-ORIENTED TRAMWAY TRACK CONDITION MONITORING AND GIS SYSTEM Ákos VINKÓ, PhD Student, Budapest University of Technology and Economics, Hungary Email: [email protected] In addition to visual inspection, mostly the under-load track geometry and vehicle dynamics measuring systems are used to determine track condition state on the European rail networks. The under load condition monitoring of tramway tracks is not widespread. On the one hand the reason for this may be the applied lower operation speed and axle load in tramway operation, on the other hand the higher safety factor of tramway tracks. According to experts condition monitoring based on visual inspection is sufficient enough to plan maintenance work of tramways. A uniform Track Condition Assessment Model, which is based on visual inspection and automatic under-load track geometry measuring system too, is needed to reduce maintenance cost and increase safety and ride comfort for passengers. In accordance with demands of the modern age, the data of asset management and the details of observed track defects must be stored in data base and display them on maps. Budapest has a large tram network, where significant reconstruction and development works are made currently. For the specialists of Budapest Public Transport Ltd. there is no decision support system, which facilitates the planning of maintenance work. This developing method wants to make maintenance work more efficient by using approximate estimate of track condition. Determining of track condition is based on visual inspection and data of in-service vehicle’s wheels- mounted accelerometers as well as GIS tools. This GIS system enables you to store data of the automatic under-load track geometry measuring devices and the visually observed track defects during perambulation of the tram lines too.
    [Show full text]
  • the Swindon and Cricklade Railway
    The Swindon and Cricklade Railway Construction of the Permanent Way Document No: S&CR S PW001 Issue 2 Format: Microsoft Office 2010 August 2016 SCR S PW001 Issue 2 Copy 001 Page 1 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS 1 Document Status Record Status Date Issue Prepared by Reviewed by Document owner Issue 17 June 2010 1 D.J.Randall D.Herbert Joint PW Manager Issue 01 Aug 2016 2 D.J.Randall D.Herbert / D Grigsby / S Hudson PW Manager 2 Document Distribution List Position Organisation Copy Issued To: Copy No. (yes/no) P-Way Manager S&CR Yes 1 Deputy PW Manager S&CR Yes 2 Chairman S&CR (Trust) Yes 3 H&S Manager S&CR Yes 4 Office Files S&CR Yes 5 3 Change History Version Change Details 1 to 2 Updates throughout since last release SCR S PW001 Issue 2 Copy 001 Page 2 of 33 Registered charity No: 1067447 Registered in England: Company No. 3479479 Registered office: Blunsdon Station Registered Office: 29, Bath Road, Swindon SN1 4AS Table of Contents 1 Document Status Record ....................................................................................................................................... 2 2 Document Distribution List ................................................................................................................................... 2 3 Change History .....................................................................................................................................................
    [Show full text]
  • (RIHSAC) Presentation
    Welcome to RIHSAC 94 Dilip Sinha, Secretary, RIHSAC 15 October 2013 1 Who’s minding the gap? John Cartledge Safety Policy Adviser Presentation to RIHSAC 15 October 2013 Why does platform edge risk matter to passengers? “At Clapham Junction the height gap between the platform and the trains on platform 15 is a health and safety issue. Towards the eastern end of the platform I have seen elderly people unable to disembark because the gap was unmanageable.” Joanna Moorhead Thursday 22 December 2011 Yes, I do mind the gap – you don't have to be drunk to fall under a train As public information campaigns go, this one seemed a cracker. Travelling while you're drunk is dangerous; and to make the point in the runup to Christmas, British Transport police have released CCTV images of a drunken passenger on a train as she staggers off it. Thankfully, the woman in the film is fine, because someone saw her fall and the train was delayed while she was hauled from under it. But seeing those images makes me furious, because despite what Network Rail might like us to believe, you don't have to be drunk to fall under a train. According to the staff at my local station, Clapham Junction in south-west London, it happens to entirely sober passengers on a regular basis, because of ever-bigger gaps between platforms and trains. I know this is true, because over the last three years my daughters, who travel to secondary school through Clapham Junction, have twice told me about incidents in which friends of theirs fell on to the tracks.
    [Show full text]
  • Structure Gauge Measuring Equipment Using Laser Range
    PAPER Structure Gauge Measuring Equipment Using Laser Range Scanners and Structure Gauge Management System Takashi TOYAMA Signalling Systems Laboratory, Signalling and Transport Information Technology Division Nozomi NAGAMINE Image Analysis and IT Laboratory, Signalling and Transport Information Technology Division Tatsuya OMORI Kenichi KITAO Signalling Systems Laboratory, Signalling and Transport Information Technology Division (Former) Ryuta NAKASONE Image Analysis and IT Laboratory, Signalling and Transport Information Technology Division Periodic measurement of the structure gauge is essential to ensure safe train operation. Measuring the clearance gauge however, is time and labor intensive given the vast number of trackside facilities. An inexpensive and efficient measuring device using laser range scanners was therefore developed. A management system is also being developed, which maps mea- sured three-dimensional point cloud data to facility data. This paper describes the problems and solutions related to applying the laser range scanners for structural gauging, and pres- ents results obtained from experiments. This paper also describes progress achieved in the development of the management system. Keywords: laser range scanner, LiDAR, structure gauge, clearance car, facility management, 3-D point cloud 1. Introduction ing developed. This paper describes the problems and solutions relat- The structure gauge or clearance gauge is the space ed to applying the laser range scanners for structure gaug- around the track, into which no part of a trackside struc- ing, and p resents r esults obtain ed f rom experi ments. This ture shou ld enter o n any a cc ount. Figu re 1 sh ow s an ex- paper a lso des cribes progr es s ach ieved in the dev elopm ent ample of the structure gauge applied on railways in Japan.
    [Show full text]
  • Railway Accident Investigation Report Tramway Operator: Nagasaki
    Railway accident investigation report Tramway operator: Nagasaki Electric Tramway Co., Ltd. Accident type: Vehicle derailment, accompanied by the accident against road traffic Date and time: About 14:56, July 31, 2013 Location: Around 44 m from the origin in Irie-machi stop, between Tsuki-Machi stop and Shiminbyoin-Mae stop, Oura branch line, Nagasaki City, Nagasaki Prefecture. SUMMARY The 5001 electric car, one-man operated and composed of one vehicle, starting from Hotarujaya stop bound for Ishibashi stop of Nakasaki Electric Tramway Co., departed from Hotarujaya stop at about 14:41, on July 31, 2013. The train driver found the bus entered into the track to turn right while powering the vehicle at about 21 km/h from Tsuki-Machi stop towards Shiminbyoin-Mae stop, immediately he sounded a whistle and applied an emergency brake, but the vehicle collided with the bus and stopped after derailed to right. There were about 60 passengers and a vehicle driver on board the vehicle, 11 passengers were injured. In addition, there were 6 passengers and a bus driver on the bus, among them, 5 passengers were injured, The front right part of the vehicle was damaged, and for the bus, the right side of the body was damaged but a fire did not outbreak. PROBABLE CAUSES It is considered probable that the tram driver applied an emergency brake immediately after he noticed the bus ahead, the tram derailed with the bus and the first axle of the front bogie derailed to the right because the bus driver moved the bus into the tramway track, without checking whether the tram approach the intersection, to turn right crossing tramway track and obstructed the route of the tramway, in the situation that it was difficult to see the traffic condition by standing buses around the intersection.
    [Show full text]
  • Eprints.Whiterose.Ac.Uk/2271
    This is a repository copy of New Inter-Modal Freight Technology and Cost Comparisons. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/2271/ Monograph: Fowkes, A.S., Nash, C.A. and Tweddle, G. (1989) New Inter-Modal Freight Technology and Cost Comparisons. Working Paper. Institute of Transport Studies, University of Leeds , Leeds, UK. Working Paper 285 Reuse See Attached Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ White Rose Research Online http://eprints.whiterose.ac.uk/ Institute of Transport Studies University of Leeds This is an ITS Working Paper produced and published by the University of Leeds. ITS Working Papers are intended to provide information and encourage discussion on a topic in advance of formal publication. They represent only the views of the authors, and do not necessarily reflect the views or approval of the sponsors. White Rose Repository URL for this paper: http://eprints.whiterose.ac.uk/2271/ Published paper Fowkes, A.S., Nash, C.A., Tweddle, G. (1989) New Inter-Modal Freight Technology and Cost Comparisons. Institute of Transport Studies, University of Leeds. Working Paper 285 White Rose Consortium ePrints Repository [email protected] Working Paper 285 December 1989 NEW INTER-MODAL FREIGHT TECHNOLOGY AND COST COMPARISONS AS Fowkes CA Nash G Tweddle ITS Working Papers are intended to provide information and encourage discussion on a topic in advance of formal publication.
    [Show full text]
  • Locolines Ed 56
    DIVISIONAL EXECUTIVE DIVISIONAL SECRETARY: Marc Marotta 0414 897 314 DIVISIONAL PRESIDENT: Terry Sheedy 0417 310 400 DIVISIONAL ASSIST. SECRETARY: Jim Chrysostomou 0404 814 141 DIVISIONAL VICE PRESIDENT: John Marotta 0414 864 702 DIVISIONAL DELEGATES Metropolitan Sub-division: Kevin Duggan 0404 811 589 Paris Jolly 0422 790 624 Pacific National Sub-division: Peter Laux 0417 526 544 Pacific National (ex Freight) Sub-division: James Styles 0427 018 963 Passenger Sub-division: Wayne Hicks 0407 035 282 MARCH 2013 LOCO LINES Conten ts LLOCOOCO LLINESINES EDITION 56 Marc Marotta—Loco Div Secretary 3 MAR 2013 Terry Sheedy—Branch / Div President 6 Loco Lines is published by the Locomotive Division of the Australian Rail, Tram & Bus John Marotta— Divisional V/P 7 Industry Union – Victorian Branch. See the bottom of this page for the Locomotive Division’s business address, V/ Line Pass OHS Report 12 telephone, e-mail and website details. Nelsons Column 14 Loco Lines is distributed free to all financial members of the Locomotive Division. Retired Enginemen also receive the Letters 20 magazine for free. It is made available to non-members at a cost of $20.00 per year. Cab Committee 22 Advertisements offering a specific benefit to Locomotive Signal Sighting Committee 23 Division members are published free of charge. Heritage groups are generally not charged for advertising or tour information. Off the Rails 25 Views or opinions expressed in published contributions to Loco Scholarships 25 Lines are not necessarily those of the Union Office. We also reserve the right to alter or delete text for legal or other Talkback from Hinch 26 purposes.
    [Show full text]
  • Section 23: Track Materials
    SECTION 23 TRACK MATERIALS 23.1 Securing Sleepers in Bundles 23.2 Loading Used sleepers 23.3 Loading New Sleepers 23.4 Concrete Sleepers 23.5 ETC wagon loading 23.6 Transportation of Welded Rails 23.1 SECURING SLEEPERS IN BUNDLES Some methods of securing sleepers in bundles have proved to be suspect. BUNDLING WOODEN SLEEPERS DO… Place into bundles of 25 maximum. Band with two metal strapping bands placed 300 mm from each end of the sleepers. DO NOT… DO NOT use a single metal band DO NOT use single or double No. 8 wire. DO NOT use plastic/nylon (blue) strapping. Single banding and No. 8 wire may allow sleepers to work loose. Plastic / nylon strapping wears against the sleepers and can break in transit. 15 November, 2017 FREIGHT HANDLING CODE Page 23.1 23.2 LOADING USED SLEEPERS TPR sleepers are more uniform in section than recovered hardwood sleepers, so different stacking methods are employed. These are shown in Diagram 23.1. DO… TPR SLEEPERS: Load in stacks of four to the wagon (US). HARDWOOD SLEEPERS: Load in stacks of three. Two bundles form the base of the stack with one bundle on top in the centre of the wagon. Refer to Diagram 18.2 Use good quality dunnage on the wagon floor and between layers. Dunnage must extend completely across the load with no short lengths. Load up to 4 stacks per wagon on wagons with 8 bond chains. Load up to 3 stacks per wagon on wagons with 6 bond chains. Ensure stanchions and headboards are in place.
    [Show full text]
  • Summary and Generalization of the Conrail Electrification Study Results for Application to Other Railroads
    / ) 6 Contract No. DOT-TSC-1686 SUMMARY AND GENERALIZATION OF THE CONRAIL ELECTRIFICATION STUDY RESULTS FOR APPLICATION TO OTHER RAILROADS Edward G. Schwarm Arthur D. Little, Inc. Acorn Park Cambridge, MA 02140 MARCH, 1980 FINAL REPORT Prepared for U.S. DEPARTMENT OF TRANSPORTATION TRANSPORTATION SYSTEMS CENTER Kendall Square Cambridge, MA 02142 Technical Report Documentation Page 1. Report No. 3. Recipient's Catalog No. .4 . Title, and Subti tle 5. Report Date March 27, 1980 Summary and Generalization of the Conrail Electrifi­ cation Study Results for Application to Other Rail­ 6e Performing Organization Coda roads DTS-742 8. Performing Organization Report No. 7. Author'*) * Edward G. Schwarm 83054 9, Performing Orgoniration Nomo and Address 10. Work Unit No. (TRAIS) R-933/RR-932 Arthur D. Little, Inc.“ Acorn Park 11. Contract or Grant No. Cambridge, MA 02140 DOT-TSC-1686 13. Type of Report and Period Covered 12. Sponsoring Agency Nome and Address Final Report, April 1979 U.S. Department of Transportation to March 1980 .Federal Railroad.Administration Office of Research and Development T4« Sponsoring Agency Code Washington, D.C. 20590 RRD-22 15. Supplementary Notes * Report prepared under contract to: Transportation Systems Center, U.S. Department of Transportation, Kendall Square, Cambridge, MA 02142 16. Abstract The recent railroad electrification feasibility study of the Conrail line segment from Harrisburg to Pittsburgh is reviewed in this report. Approach to design and operational strategy are discussed. A summary of costs and units for various investment and cost items is presented, escalated into 1980 dollars. Of particular interest to the reader are the comments regarding the more general application of the methodology and cost figures to subsequent railroad electri­ fication studies.
    [Show full text]